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rante questo periodo.

Meritano un sincero ringraziamento i miei compagni di avventura Daniele, Fran-
cesco, Marco e Salvatore, con i quali ho avuto la fortuna di instaurare uno splendido
rapporto di amicizia e collaborazione.

Infine, vorrei ringraziare i miei genitori e i miei nonni, ai quali sono riconoscente
per aver sempre avuto fiducia in me, contribuendo in ogni modo possibile ai risultati
che ho raggiunto in questi anni.

i



ii



Contents

1 High-efficiency horn antennas 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Multi-beam antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 Structure of multiple-aperture MBAs . . . . . . . . . . . . . . 4
1.2.3 Feed types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 High aperture efficiency horn antennas . . . . . . . . . . . . . . . . . 8
1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Determination of the modal content at the aperture . . . . . . 9
1.3.3 Synthesis of the profile of the antenna . . . . . . . . . . . . . . 11
1.3.4 Analysis methods . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Computation of mode functions 17
2.1 Circular waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Introduction to circular waveguides . . . . . . . . . . . . . . . 17
2.1.2 Application of the transversal resonance method to circular

waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Conical waveguide modes . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Numerical methods for the solution of the associated Legendre equation 25

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Associated Legendre equation . . . . . . . . . . . . . . . . . . 25
2.3.3 Gegenbauer equation . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 Boundary conditions for Gegenbauer equation . . . . . . . . . 29
2.3.5 Pseudospectral methods . . . . . . . . . . . . . . . . . . . . . 29
2.3.6 Spectral methods . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.7 Legendre spectral method . . . . . . . . . . . . . . . . . . . . 36
2.3.8 Gegenbauer spectral method . . . . . . . . . . . . . . . . . . . 40
2.3.9 Normalized Gegenbauer spectral method . . . . . . . . . . . . 45
2.3.10 Associated Legendre spectral method . . . . . . . . . . . . . . 47
2.3.11 Associated Legendre functions implementation . . . . . . . . . 48
2.3.12 Visualization of some eigenvectors . . . . . . . . . . . . . . . . 48

iii



Contents

2.4 Comparison between numerical methods and final results . . . . . . . 53
2.4.1 Final results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3 Analysis of rectangular E-plane and H-plane devices 89
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . 90

3.2.1 E-plane devices . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2.2 H-plane devices . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2.3 Modal expansion of waveguide electromagnetic field components 97
3.2.4 Weak-form formulation of the problem . . . . . . . . . . . . . 98

3.3 Application of the Spectral-Element Method . . . . . . . . . . . . . . 99
3.3.1 Definition of non-specialized basis functions . . . . . . . . . . 100
3.3.2 Meixner conditions . . . . . . . . . . . . . . . . . . . . . . . . 102
3.3.3 Specialization of basis functions . . . . . . . . . . . . . . . . . 104
3.3.4 Patching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.4 Application of the Galerkin method . . . . . . . . . . . . . . . . . . . 107
3.4.1 Continuity conditions equations . . . . . . . . . . . . . . . . . 108
3.4.2 Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . . 109
3.4.3 Determination of the scattering matrix by means of a reduced-

order model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Analysis of devices with cylindrical symmetry 113
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2 Determination of electromagnetic field components . . . . . . . . . . 113

4.2.1 Derivation of electromagnetic field components relationships . 118
4.2.2 Application of boundary conditions . . . . . . . . . . . . . . . 121
4.2.3 Modal expansion of waveguide transversal fields . . . . . . . . 124
4.2.4 Continuity of ϕ components . . . . . . . . . . . . . . . . . . . 125

4.3 Evaluation of expansion and test functions . . . . . . . . . . . . . . . 126
4.4 Determination of the linear system . . . . . . . . . . . . . . . . . . . 131

A Appendix of Chapter 2 135
A.1 Resume of Bessel functions main properties . . . . . . . . . . . . . . . 135

A.1.1 Resume of spherical Bessel functions properties . . . . . . . . 136
A.2 Unwrap functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.3 Resume of associated Legendre functions properties . . . . . . . . . . 139
A.4 Properties of Gegenbauer polynomials . . . . . . . . . . . . . . . . . . 140
A.5 Chebyshev polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.6 Interval mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B Appendix of Chapters 3 and 4 145
B.1 A vector integral theorem . . . . . . . . . . . . . . . . . . . . . . . . 145
B.2 Computation of a line integral . . . . . . . . . . . . . . . . . . . . . . 146
B.3 Determination of modal eigenfunctions for the circular waveguide . . 148

B.3.1 Derivatives of modal eigenfunctions . . . . . . . . . . . . . . . 150
B.4 Verification of boundary conditions . . . . . . . . . . . . . . . . . . . 152

B.4.1 TM case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

iv



Contents

B.4.2 TE case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
B.5 Coefficients for the Galerkin system of cylindrical junctions . . . . . . 154

v





CHAPTER 1

High-efficiency horn antennas

1.1 Introduction

This chapter is aimed at introducing a new type of horn antennas, with very good
features under several points of view, such as aperture efficiency or low cross-
polarization level. The first section describes multi-beam antennas (MBAs), intro-
ducing high-efficiency antennas and comparing them with other feeds. The second
section is focused on high-efficiency horn antennas, introducing design strategies.

1.2 Multi-beam antennas

1.2.1 Introduction

Multiple-beam antennas (MBAs) are systems that can illuminate a specific geo-
graphical region, using high-gain multiple spot beams for both downlink and uplink
coverage. These systems are commonly used in satellite communications, for in-
stance for military, direct-broadcast satellites (DBS), or mobile services. Their goal
is, given a well-defined geographic region partitioned in cells,

• to cover each cell uniformly;

• to have low cross-polarization levels.

The evolution of communication systems requires to improve coverage, band-
width and flexibility of services; out of these needs, in order to provide these ser-
vices to large geographic areas, one of the newest challenges is the realization of
multiple-beam antennas able to operate in separated frequency bands.

The design of hardware with either multi-beam or multi-band features is chal-
lenging for many reasons; one issue is the frequency behavior of aperture antennas,
which produces narrower beams at high frequencies compared to ones at lower fre-
quencies; therefore, if frequency bands are widely separated, it is hard to obtain the
same performances of the designed device.
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1. High-efficiency horn antennas
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Figure 1.1: Geometry of a parabolic offset reflector.

Focusing firstly on apertures, they can be reflectors or dielectric lenses. Usually,
they are realized with offset-parabolic reflectors antennas, because an equivalent
lens system would have almost twice the mass compared to the reflector system,
and this is not advisable for satellites. The idea for the realization of the aperture
for these multi-band MBAs is to synthesize a reflector which produces, for the lower
operating frequency range of the required bands, the nominal beam; for signals
belonging to the higher band, this reflector have to be oversized. This means that
at lower frequencies the design is basically standard, considering a feed in the focus
of the reflector system, while at higher frequencies the feed array is de-focused; in
other words, there are two different behaviors in different frequency bands, without
using frequency-selecting surfaces (FSSs), which are expensive. The de-focusing can
be considered by modifying the shape of the reflector.

There are some strategies for the realization of multiple-beam antennas; every
design scheme can be characterized by:

• the number of apertures employed;

• the realization scheme of beams starting from feeds.

Most common design strategies are

1. Single-aperture design with a single element per beam (basic feed concept); in
this case, there is just one aperture, and there is one feed for the realization
of each beam. The drawback of this solution is the huge amount of feeds,
therefore it is possible to use as radiating elements small horns, in order to
obtain high adjacent beam overlap, increasing the value of the minimum gain
for each spot. This means that horns need to have either small dimensions or
high gain.

2. Single-aperture design with overlapping feed clusters (enhanced feed concept);
this design strategy is based on using several horns for the formation of each
beam; in this case the core of the design is the beam-forming network, which
has to provide the correct excitations. So, since power amplifiers have to
manage several carriers, their efficiency is reduced, compared to the previous

2



1.2. Multi-beam antennas
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Figure 1.2: Application of the basic feed concept; beam 1 is formed by horn A, beam
2 by horn B, and so on.
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Figure 1.3: Application of the enhanced feed concept; the first beam is formed by
horns A,B,C,D,E,F,G; the second beam by horns A,B,C,G,H,I,S, and so on.

strategy; therefore, the drawback of this solution is the design of RF electron-
ics, which results to be more complicated.

3. Multiple-aperture design with a single element per beam; in this case, there are
some reflectors, usually three or four, which are independent. Each aperture
can be associated to a frequency band, in order to apply a frequency re-use
scheme for the realization of the system.

Figures 1.2 and 1.3 show the two ways for the realization of beams, which are the
basic feed concept and the enhanced feed concept ones, respectively. In the former
one, each horn is used to generate each beam; this topology is quite easy to realize,
since the beam-forming network do not needs to manage composed beams; on the
other hand, in order to reduce sidelobes levels it is necessary to taper the field
distribution, therefore the antenna efficiency is lowered; this decreases the gain of
the structure; to sum up, it is not possible to obtain, by this way, either low sidelobe
levels or high gain.

Considering the second concept, there is a cluster of horns instead of a single
horn for the generation of each beam. The beam-forming network has to handle

3



1. High-efficiency horn antennas

the possibility to compose beams from each cluster of feeds in order to generate the
final single beam; in other words, many feeds contribute to the generation of the
single beam. This is more difficult to realize in terms of electronics, but it has some
advantages; since more feeds contribute to the formation of a single beam, there is a
virtual” increase of each equivalent element size. Moreover, it is possible to modify
each cluster excitation, in order to address jammers or interferers issues.

1.2.2 Structure of multiple-aperture MBAs

In the following the multiple-aperture strategy is discussed. The first step in order to
carry out the design is the partition of the geographic area which has to be covered
by the MBA, in a number of contiguous cells; these cells are overlapped with the
neighbour cells at their boundary. Then, each cell is related to an aperture, realized
with a reflector antenna (i.e. an offset-parabolic antenna). The spatial relationship
between ground cells and aperture antennas depends on the number of apertures
(typically two, three, four or seven). Since this system is multi-band, there is also a
frequency-reuse scheme, where each frequency is related with an aperture. The goal
of this system is to generate adjacent beams from different apertures, in order to
realize an interleaved spot-beam coverage. In Figure 1.4 two examples of realizations
of beams with arbitrary shapes are shown.

Depending on the topology employed, it is possible to relax the feed specifica-
tions; an increment of beam spacing relaxes the requirement on the feed size, i.e. it
can be bigger, with the consequent higher gain, lower spill-over losses and sidelobe
levels.

There are some design parameters which can be shown, in order to understand
the operating functions of these systems. Considering a typical hexagonal beam
configuration1, as in Figure 1.5, it is possible to define the most relevant beam
angular parameters.

• The angle ϑs is the angular spacing between the centers of two adjacent beams.

• The angle ϑ
(i)
c is the minimum angular spacing between the centers of beams

re-using the same frequency; i indicates the number of cells for the frequency
re-use scheme.

• The angle ϑr is the minimum angular spacing between the extremes of two
beams re-using the same frequency.

The angle ϑ0 is the angular beam diameter at the triple beam crossover of three
adjacent beams. This last parameter is relevant because, in a hexagonal grid, it
indicates the point where the directivity is minimum. From [18] it is possible to find
a relationship between ϑ0 and ϑs, which is

ϑs =

√
3

2
ϑ0

1like the one proposed in [18]
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1.2. Multi-beam antennas
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Figure 1.4: Examples of beams with arbitrary shapes, realized with four-apertures
design and three-apertures design methods.
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1. High-efficiency horn antennas
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Figure 1.5: Example of beam showing the most significant parameters.

Moreover, depending on the number of frequency re-use cells employed in the
system, it is possible to find the ϑ

(i)
c values. Depending on the number of apertures,

so on the frequency-reuse scheme, it is possible to find, in literature ([18], [20]), for
three-cell, four-cell and seven-cell systems (and relative frequency re-use schemes)
respectively, that these parameters are

ϑ(3)
c = 1.732ϑs

ϑ(4)
c = 2.000ϑs

ϑ(7)
c = 2.646ϑs

The last parameter introduced in this paragraph is the optimal feed size, dm

(which represents the maximum diameter of circular horns, considering that adjacent
feeds are touching each other). For the evaluation of equations which can relate the
feed size to other parameters, it is necessary to define from [18] the scan factor SF

as the ratio of the electrical scan angle of the beam to the physical displacement of
the feed from the focal point,

SF ,
1 +X

(
D
4F

)2

1 +
(
D
4F

)2 tan−1

(
1 + cosϑ2

2F

)
where X is a function of tapering (X = 0.3 for t < 6, X = 0.36 for t ≥ 6, t is the

tapering on the edge of the reflector), ϑ2 is the angle between the lowest point of
the offset reflector and its center as function of its geometry parameters D, F and
h (diameter, focal point and offset from the axis respectively); it may be found as

6



1.2. Multi-beam antennas

ϑ2 =
1

2

{
tan−1

[
D + h

F − (D+h)2

4F

]
+ tan− 1

[
h

F − h2

4F

]}
Given SF, it is possible to evaluate, for each topology, dm as follows

d(3,4,7)
m =

ϑ
(3,4,7)
c

SF

1.2.3 Feed types

In order to obtain multi-band antennas it is necessary to design multi-band horns
as feeds; these structures need to avoid the use of FSS or sub-reflectors. The cluster
of feeds forms congruent sets of beams for any considered band. The objective of
feed radiators for these systems is to obtain a uniform field distribution and a low
cross-polarization level. Excluding the use of dielectrics and dominant-mode conical
horns, two common solutions for the realization of feeds are the corrugated horn and
the Potter horn. Both choices are not very suitable in this case, for different reasons.
The corrugated horn can not be used for many MBA applications because of the
spatial occupation caused by corrugations. In fact, since the radial occupation of
corrugated horns is larger than the aperture size, efficiency can not be very high.
On the other hand, Potter horn radiators have cross-polarization limitations and
band issues; as a matter of fact, these structures are based on the use of one step to
generate a TM11 mode, which is mixed with the TE11 mode by designing properly
the length of the flared section; this does not work in well-separated bands.

In order to have very high performances under both cross-polarization and gain
points of view in several bands, the best choice is the use of high-efficiency radiators
based on multimode profiled circular horns; these feeds can be designed in order
to assume, just like the reflector, a nominal behavior in lower frequency bands;
in addition, they can change their phase center, moving it from the center of the
aperture (at lower frequencies), toward the reflector (at higher frequencies). How-
ever, since frequency performances of these high-efficiency are generally very good
(since they can maintain a very high value of aperture efficiency and a very low
cross-polarization level in a large bandwidth), they are the most suitable choice for
these new systems. In addition to electrical specifications it is necessary to take into
account mechanical requirements too, such as weight and spatial dimensions.

The use of multimode profiled circular horn antennas have a great impact on
MBA performances under several points of view. In fact, each high-efficiency horn
exploits almost the entire geometric area, since the field distribution is quite uniform.
Because of this, the main goal of MBAs, which is the realization of a uniform
coverage for each cell, is reached. This implies that these antennas have high gain;
therefore, considering feed clusters as arrays, it is possible to reduce the number
of feeds in order to obtain the same global gain. Furthermore, it is possible to
use these topologies to reduce the cross-polarization. Although it is not possible to
obtain either an extremely low cross-polarization or a 100% aperture efficiency, with
multimode profiled antennas it is possible to obtain good performances about both
the specifications. Figure 1.6 shows the maximum achievable aperture efficiency of

7



1. High-efficiency horn antennas

Figure 1.6: Maximum aperture efficiency of a profiled multimode horn.

Figure 1.7: Cross-polarization level of maximum aperture efficiency circular horn.

a profiled multimodal circular horn, while Figure 1.7 quantifies the level of cross-
polarization; both plots are functions of the aperture diameter, normalized to the
free-space wavelength2.

1.3 High aperture efficiency horn antennas

1.3.1 Introduction

This section is focused on the study of horn antennas, which are one of the most
employed types of feed for reflector systems. Basically, a horn antenna is a flared
structure which couples the free space to a waveguide. Design goals are the real-
ization of an almost uniform aperture field distribution, and low cross-polarization;

2these figures are taken from [19]
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1.3. High aperture efficiency horn antennas

moreover, low sidelobe levels are required.
In addition to electrical specifications like gain or polarization, it is necessary to

keep into account mechanical specifications, like weight or spatial occupation; these
requirements exclude the possibility to use corrugated horns, since corrugations
imply the need of a higher spatial occupation in order to obtain the same aperture
efficiency, and in many systems, like MBAs, this can not be accepted.

In literature it is possible to find solutions to this problem, based on multimodal
profiled circular horn antennas; this means that, designing opportunely the profile
of the antenna, it is possible to increase the aperture efficiency of the antenna by
providing to the aperture several modes.

To sum up, the goal is to alter the mode content of the transmitted and/or of
the received signal by introducing discontinuities in the profile of the antenna, in
order to increase the electrical aperture size.

1.3.2 Determination of the modal content at the aperture

The radiation pattern of an aperture antenna equals the spatial Fourier transform of
the field distribution at the aperture of the radiator.The aperture field distribution
can be represented using the modal expansion, so as a superposition of TE and TM
modes. So, it is possible to write

E aperture
t =

∑
i

V ′i e ′i(ρ, ϕ) +
∑
i

V ′′i e ′′i (ρ, ϕ)

where the “prime” apex indicates TM modes, while the “second” apex is relative
to TE modes.

Modal voltages V ′i and V ′′i represent the weights used for the determination of
the electromagnetic field on the aperture as a linear combination of mode functions.
Since the aperture field distribution needs to be designed in order to comply with
the specifications, it is necessary to find the values of V ′i and V ′′i in order to obtain
it.

An example of requirement is the uniform field distribution at the aperture; in
order to reach this goal, it is necessary to evaluate, for this case, modal voltages.
They can be calculated as projections of the entire field at the aperture on modes;

V ′i =
〈
E aperture

t , e ′i
〉

V ′′i =
〈
E aperture

t , e ′′i
〉 (1.1)

At this point it is necessary to recall the relationship between geometric area
and equivalent area; it is known that

Aeq =

∣∣∫∫
Σ

E aperture
t dΣ

∣∣2∫∫
Σ

∣∣E aperture
t

∣∣2 dΣ

In order to maximize the equivalent area, it may be proved that the electric field
must have an expression like

E aperture
t = ĉE0 (1.2)

9



1. High-efficiency horn antennas

Figure 1.8: Number of propagating TE modes at the aperture of profiled multimode
circular horns.

Where ĉ is a constant unit vector. From here, it is possible to prove ([3] or [19])
that in order to obtain the uniform aperture field distribution, TM modes should
not be introduced in the final aperture field. On the other hand, it is necessary to
provide to the aperture only TE modes. This implies that TM modal voltages V ′i
ideally should equal zero. Citing [19], it is possible to quantify, for structures with
circular transversal section, the number of TE1n and TM1n modes supported by the
aperture; in fact, each aperture can support a limited number of modes. Table 1.1
and Figure 1.8 provide some informations about modes above their cut-off frequency.

Mode χmn guide diameter (in wavelengths λ)
TE11 1.841183 0.5861
TM11 3.831706 1.2197
TE12 5.331443 1.6971
TM12 7.015587 2.2331
TE13 8.536316 2.7172
TM13 10.17346 3.2383
TE14 11.70601 3.7261
TM14 13.32369 4.2411
TE15 14.86359 4.7312
TM15 16.47062 5.2428
TE16 18.01553 5.7345

Table 1.1: Circular waveguide modes, zeros of Bessel functions of first kind and
critical guide diameter relative to each mode.

From [19] and from [3] it is possible to find examples of the aperture modal
content for the design of profiled multimode horn antennas. Considering the example
from [19], it is possible to find the set of modal voltages reported in Table 1.2.

In order to obtain a very uniform field distribution at the aperture, it is necessary

10



1.3. High aperture efficiency horn antennas

Mode Ideal |Vi| (V) Ideal ∠Vi (deg) Actual |Vi| (V) Actual ∠Vi (deg)
TE11 1.0 0.0 1.0 0.0
TM11 0.0 0.0 0.0205 +25.5
TE12 0.3112 0.0 0.2813 -11.4
TM12 0.0 0.0 0.0376 -132.5
TE13 0.2202 0.0 0.0557 +36.3
TM13 0.0 0.0 0.0238 +25.2

Table 1.2: Example of the modal content of the aperture of a high-efficiency profiled
multimode circular horn, with diameter of 3.71λ.

to provide a high number of TE modes; obviously, it is necessary to keep into account
the theoretical limit of Figure 1.8; this means that a well-defined number of modes
can be provided to an aperture, depending on its size.

It may be remarked that these results are valid only in order to produce a uniform
distribution; if the specification requires a tapered distribution for the horn aperture,
all it is necessary to provide both TE1n and TM1n modes. An antenna with uniform
distribution can not have low cross-polarization levels too; therefore, in order to
reduce it, it is necessary to have some TM modes contributions in the aperture field
distribution. To sum up, there is a trade-off between polarization and uniformity of
the field, as previously seen in Figures 1.7 and 1.6.

1.3.3 Synthesis of the profile of the antenna

In this paragraph some ideas for providing the desired modal content to the aperture
field are shown. Usually, devices are fed with the fundamental mode. Therefore,
it is necessary to consider all modes which are generated from the TE11 at each
discontinuity.

Considering for example the goal of realizing a uniform field distribution, it is
possible to use discontinuities in order to bring several TE modes to the aperture.
Qualitatively, with an aperture of about four wavelengths it is possible to support
almost three TE modes, which are TE11, TE12, TE13. These modes, starting from
the exciting TE11, need to be generated by the structure.

Depending on the amplitude of the horn aperture, it is necessary to introduce a
well-defined number of steps; for instance, if the horn aperture size supports three
modes as in the previous example, two steps are needed: the first one has to end
above the cut-off dimension of the TE12 mode, and the second one above the cutoff
dimension of the TE13 mode. So, amplitudes of these discontinuities depend on the
considered mode, but also on the relative amplitudes of higher order modes which
need to be introduced.

There are at least three types of discontinuities;

• step discontinuities, which are discontinuities between two waveguides, so two
cylindrical regions;

• slope discontinuities, which connect two conical regions with different half-
aperture angles;
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1. High-efficiency horn antennas

Figure 1.9: Examples of step discontinuity (left), slope discontinuity (center), and
step-slope discontinuity (right).

z

ρ

Figure 1.10: Example of horn antenna profile with step-slope discontinuities.
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1.3. High aperture efficiency horn antennas

Figure 1.11: Examples of outward (left) and inward (right) step-slope discontinuities.

z

ρ

Figure 1.12: Example of horn antenna profile with slope discontinuities.

• step-slope discontinuities, which are step discontinuities between two conical
regions with different half-aperture angles.

In all the cases, the discontinuity is just radial; this means that, considering
the incident TE11, so with m = 1, every excited mode has m = 1; therefore, are
generated only TE1n and TM1n modes, for both the types of discontinuity.

In literature it is possible to find examples of designs of profiled multimode
circular horns based on slope discontinuities, like in [19] or in Figure 1.11, or based
on step-slope discontinuities, as in [3], or in Figure 1.12. Both these radiators are
high-efficiency horns.

1.3.4 Analysis methods

This thesis is focused on the determination of a design-oriented analysis method for
structures with cylindrical invariance, like the fundamental ones of profiled multi-
mode circular horns. The core element of this structure is the discontinuity between
a cylindrical region and a conical region, or between two conical regions with differ-
ent half-aperture angles.
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1. High-efficiency horn antennas
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Figure 1.13: Transmission-line analysis approach; each discontinuity is modeled with
a scattering matrix, and flared sections are modeled as transmission line sections.
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1.3. High aperture efficiency horn antennas

meniscus

Figure 1.14: Discontinuity between a conical section and a cylindrical one, and phase
surfaces in the two sections; the meniscus.

An example of method for the determination of the scattering matrix of a dis-
continuity is based on the mode-matching technique; this is performed expanding
left and right field components with respect to the interface using the set of mode
functions, then enforcing the tangential components to be continue at the inter-
face, in weak form. The analysis of the whole structure is based on the study of
a distributed parameters network; each discontinuity is modeled with its scattering
matrix, then the global scattering parameters of the antenna are computed by the
cascade of these matrices. This procedure is graphically summarized in Figure 1.13.

As it is possible to see from Figure 1.14, considering for instance a slope discon-
tinuity between a waveguide and a flared section, in the waveguide phase surfaces
are planes, but in the flared section of the antenna phase surfaces are spheres3.
This means that there is a region where waves have neither plane nor spherical
wave surfaces; this region in literature is called “meniscus”. The application of the
mode-matching technique to this problem is very complicated.

Usually this problem is avoided by discretizing the antenna in terms of waveguide
step discontinuities (see Figure 1.15); since waveguide steps can be analyzed easily,
it is possible to partition the profile of the antenna with pieces of circular waveguide
(since here are considered structures with circular transversal section).

By this way, the profile of the antenna is approximated with a series of waveguide
steps. If each step is very short, for instance λ/20, the approximation is acceptable.
Then, for each step is calculated the scattering matrix, and all these matrices are
cascaded in order to obtain the matrix of the whole device.

3in the case of conical to conical discontinuities, phase surfaces are both spheres, but with
different radii
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1. High-efficiency horn antennas

step

1 2 3

step step · · ·

Figure 1.15: Example of approximation of a linear profile as a cascade of waveguide
steps

In this work is introduced a method which allows to obtain faster and more reli-
able simulations, without using the mode-matching approach. The idea is to divide
the structure in few subdomains, and then to apply to each subdomain a spectral
method. A step or slope discontinuity may imply the presence of an edge, where the
electromagnetic field has singular behavior, as known from the theory of Meixner
conditions. A singularity is hardly representable with regular functions (like modes),
therefore, using a set of regular expansion functions, it would be necessary to use
many functions in order to obtain acceptable results, slowing down the simulation.
Since these analysis methods are employed to support programs implementing opti-
mizing algorithms, simulations need to be very fast and their results very accurate.
So, in order to keep into account the presence of edges, expansion functions have
to keep intrinsically into account Meixner conditions. By introducing appropriate
singular elements in the set of basis functions, it is not necessary to increase too
much the order of the numerical method, therefore it is possible to comply with
both speed and accuracy requirements.
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CHAPTER 2

Computation of mode functions

Introduction

The objective of this chapter is to explain how the computation of critical con-
stants and of mode functions of a circular waveguide and of a radial waveguide was
performed.

2.1 Circular waveguide

2.1.1 Introduction to circular waveguides

The classical approach for the analysis of a waveguide with circular transversal
section (see Figure 2.1) can be found on several books, for instance [6]. The most
significant results from the classical analysis are resumed here.

The most suitable orthogonal coordinate system for the representation of this
structure is the cylindrical one: (ρ, ϕ, z); the transversalization method is ap-
plied considering z as longitudinal coordinate. The goal is to find Φmn(ρ, ϕ) and
Ψmn(ρ, ϕ), which are respectively the generating function for TM modes eigenfunc-
tions and for TE modes eigenfunctions. It is possible to prove that these functions
are representable as the product of a function R(ρ), which contains informations
about the radial component of the problem, and Q(ϕ), for the angular component
of the problem. Furthermore, it may be proved that R(ρ) is the solution of the
Bessel equation, Q(ϕ) of the 1-dimensional Helmholtz equation1. The index m is
related with the angular geometry parameters of the structure, while n with the
radial geometry parameters.

The explicit expressions of the potentials are (see [5])

Φmn = Amn Jm(k′t,iρ)
cos
sin

mϕ

1obviously these equations have to be solved with appropriate boundary conditions, depending
on the considered problem and polarization

17



2. Computation of mode functions
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Figure 2.1: Circular waveguide

Ψmn = Bmn Jm(k′′t,iρ)
cos
sin

mϕ

where

k′t,i =
χmn
a

and kt,i” =
χ′mn
a
,

χmn is the n-th zero of the Bessel function of first kind and order m, χ′mn is the
n-th zero of the first derivative of the Bessel function of first kind, a is the radius of
the waveguide, Amn and Bmn are the normalization constants for the problem.

2.1.2 Application of the transversal resonance method to
circular waveguides

In this section we will use an alternative approach, based on the transversal reso-
nance method, in order to compute the critical constant for the circular waveguide,
which may be used in a transmission line model. The most significant advantage
of this method is the fact that it does not require a guess function for the zeroes
of Bessel functions, which are the basic functions for the modal representation of
circular waveguides. In fact, since critical frequencies of circular waveguides modes
are related with zeroes of Bessel functions, it is necessary to compute them with a
numerical method.

The first step in order to perform this process should be guessing the position of
the zero, in order to run a numerical method which will find a more precise value
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2.1. Circular waveguide

starting from it. Some guess functions may be found for instance on [1], but they
are unreliable, especially for the first zeroes and so for the first modes, which are
the most significative ones for the purposes of this work.

The problem which must be studied in this section is, for TM modes:{ (
∇2

t + k2
t

)
Φ(ρ, ϕ) = 0

Φ = 0 for ρ = ρe

where ρe is the radius of the transversal section of the circular waveguide. Using
the variable separation method, it is possible to write Φ(ρ, ϕ) as:

Φ(ρ, ϕ) = R(ρ)Q(ϕ)

Focusing on R(ρ), the problem which must be solved is the analysis of a transver-
sal transmission line, which is a model used in order to determine the modal param-
eters, where the “propagation direction” is the radial coordinate ρ of the cylindrical
coordinate system used in order to represent the transversal section of the waveguide.
In this transversal waveguide natural waves are not plane waves, but cylindrical
waves, which are a couple of waves, one expanding from the center (outgoing wave),
one collapsing toward the center (ingoing wave). These waves are mathematically
representable with Hankel functions. Indeed, the starting equation for this trans-
mission line is a Bessel differential equation, which allows as a solution a combination
of Bessel functions, but also of Hankel functions, which are a linear combination of
Bessel functions. The latter ones are more interesting, in this case, because they
represent traveling waves.

Considering a similar case, in a longitudinal transmission line sine and cosine
are solutions of the Helmholtz equation, but they represent standing waves, be-
cause their zeroes do not move in time (in other words, considering the inverse
phasor transform, there is no term which generates a non-zero phase velocity). The
most commonly used solution for this example is the traveling waves one, based on
complex exponentials. The reason why in this analysis are used Hankel functions
instead of Bessel function, is that Bessel functions are standing solutions, Hankel
functions are traveling solutions. In order to fix this idea, it is possible to observe
the asymptotic expansions of Hankel and Bessel functions for x→∞.

H(1)
m (x) ∼

√
2

πx
e+j(x−mπ

2
−π

4 )

H(2)
m (x) ∼

√
2

πx
e−j(x−mπ

2
−π

4 )

Jm(x) ∼
√

2

πx
cos
(
x−mπ

2
− π

4

)
Ym(x) ∼

√
2

πx
sin
(
x−mπ

2
− π

4

)
Remembering that cylindrical waves, far away from the source, are similar to plane
waves, it is evident that Bessel functions are related with standing waves, and Hankel
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2. Computation of mode functions
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Figure 2.2: Loop Gain calculation model

functions with traveling waves. More in details, outgoing waves (the cylindrical
equivalent of progressive waves) are expressed with H(2); ingoing waves with H(1).
Therefore, it is possible to write R(ρ) as:

R(ρ) = AH(1)
m (ktρ) +BH(2)

m (ktρ)

It is possible to define reflection coefficients for ingoing and outgoing cylindrical
waves starting from this last expression; in fact, it can be written as:

R(ρ) = BH(2)
m (ktρ)

[
1 +

A

B

H
(1)
m (ktρ)

H
(2)
m (ktρ)

]
, BH(2)

m (ktρ) [1 + Γo(ρ)] (2.1)

where Γo(ρ) is the reflection coefficient relative to outgoing waves; Γi(ρ) can be
defined simply by taking AH(1) away from the parentheses:

R(ρ) = AH(1)
m (k′tρ)

[
1 +

B

A

H
(2)
m (k′tρ)

H
(1)
m (k′tρ)

]
, AH(1)

m (k′tρ)
[
1 + Γi(ρ)

]
(2.2)

For ρ = ρe, there is the PEC boundary condition, so Γo(re) = −1; in other words,

AH(1)
m (k′tρe) +BH(2)

m (k′tρe) = 0 =⇒ B = −AH
(1)
m (k′tρe)

H
(2)
m (k′tρe)

the modulus of the ratio of the Hankel functions equals 1, so |A| = |B|. So, by
remembering that Hankel functions are defined as

H(1)
m (x) = Jm(x) + jYm(x)

H(2)
m (x) = Jm(x)− jYm(x)

if A = B in phase too, Ym terms are equal with opposite sign, so, because of the
fact that Ym(0) is the only singular point, the final function is regular. In order to
find the critical constants for TM waves, it is necessary to calculate the loop gain T
for outgoing and ingoing waves. It can be computed as the product of the ingoing
and outgoing reflection coefficients in an arbitrary point belonging to the domain;
considering the ρ axis, the equivalent line is in Figure 2.2.
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2.1. Circular waveguide

Considering ρ = ρe as point for the calculation of the loop gain:

T = Γi(ρe)Γ
o(ρe)

=
H

(2)
m (k′tρe)

H
(1)
m (k′tρe)

(−1) (2.3)

The mode functions must satisfy |T | = 1, and ∠T = n2π conditions, where n is
the modal index. |T | = 1 is automatically satisfied by (2.3), because the absolute
value of the ratio of the two Hankel functions evaluated in the same point equals
1. Actually, this is true only if the argument of Hankel functions is real, therefore
kt have to be real; therefore, the |T | = 1 condition gives informations about the
domain of the eigenvalue of the problem.

About the phase condition, one Hankel function is the complex conjugate of the
other one. About the phase, steps are slightly harder; first of all, from the fact that
H

(1)
m = H

(2)∗
m , it follows that:

∠H(1)
m = −∠H(2)

m

so:

∠T = π + ∠
H

(2)
m (k′tρe)

H
(1)
m (k′tρe)

= π − 2∠H(1)
m (k′tρe) (2.4)

In order to evaluate the critical constant, the ∠T expression will be modified, in
order to obtain an unwrapped expression. This can be useful because, without
unwrapping, the behavior of the phase jumps from −π to π.

The basic element for the unwrapping process is a ϑ(k′tρ) function, which esti-

mates the phase of H
(1,2)
m . The required quality for the estimated phase is not high;

in fact, the only purpose for ϑ(k′tρ) function is to count correctly the number of
turns of the phase (every turn is 2π), in order to have:∣∣∠H(1)

m (ktρ)e−jϑ(ktρ)
∣∣ < 2π

in other words, the phase of the Hankel function multiplied by the unwrap function
has to shift less than 2π. This method is called analytical unwrap. From (2.4),

∠T = π − 2∠H(1)
m (k′tρe)e

−jϑ(k′tρe) − 2ϑ(k′tρe) = n2π

The modes of the circular waveguide are those solutions of the Bessel equation with
|T | = 1, and ∠T = n2π; n is the modal index, which is also the index of the
considered zero of the Bessel function (for instance, n = 2 identifies the second zero
of the Bessel function, so the second critical constant for a fixed m, order of Bessel
function). The unwrap function ϑ can be found in [1], (9.2.29) for TM modes.

TE modes

For TE modes the procedure is almost the same, considering the fact that the
problem is:
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2. Computation of mode functions

z
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Figure 2.3: Example of conical section (of a horn antenna)


(
∇2

t + k2
t

)
Ψ(ρ, ϕ) = 0

dΨ

dν
= 0 for ρ = ρe

Therefore, there are some basic differences; in fact:

Ψ(ρ, ϕ) = AH(1)
m (ktρ) +BH(2)

m (ktρ)

just like in the previous case, this time the boundary condition is about the derivative
normal with respect to the contour of the waveguide, which is ρ̂; so:

dΨ

dρ
= AH′(1)

m (ktρ) +BH′(2)
m (ktρ)

In conclusion, the procedure is basically identical, compared to the previous one,
using the derivatives of the Hankel functions instead of the Hankel functions. For the
unwrap it is possible to do almost the same considerations, using as approximating
expression for the phase, ϑ, formula (9.2.31) from [1].

2.2 Conical waveguide modes

This section focuses on a different problem, which is the computation of modal
critical constants for a conical waveguide.

The geometry of the structure is in Figure 2.3. ϑ0 is the flare angle and ϕ is the
azimuthal angular coordinate.

It is possible to apply to the this structure the Marcuvitz and Schwinger transver-
salization method, using as longitudinal coordinate the radial one, r; this means that
modal eigenfunctions will be functions of ϕ and ϑ.

The application of this method and the main results are slightly different com-
pared to the rectangular or circular waveguide cases. In fact, the most significant
difference between this case and the previous ones is that, for waveguides analyzed
with radial Marcuvitz and Schwinger equations, propagation of modes toward the
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2.2. Conical waveguide modes

radial direction is mathematically representable using spherical Bessel functions, in-
stead of exponential functions. These functions are related with Bessel functions,
and so their asymptotic behaviors are similar to Bessel functions ones; this means
that all previous considerations about the representation of traveling or standing
cylindrical waves respectively for Hankel and Bessel functions, are still correct about
spherical waves and spherical Hankel or spherical Bessel functions.

Another difference with respect to the previous method may be found by observ-
ing the generating functions for modal eigenfunctions. Once again it is possible to
use the variable separation method in order to obtain

Φ(ϑ, ϕ) = Φm(ϕ)Φm
p (ϑ)

Ψ(ϑ, ϕ) = Ψm(ϕ)Ψm
p (ϑ)

where Φ is the generating function for TM mode eigenfunctions, Ψ for TE mode
eigenfunctions. These functions come from the solution of differential equations with
Dirichlet or Neumann boundary conditions respectively for TM and TE modes.

About ϕ coordinate, the component of the generating function, Φm(ϕ) or Ψm(ϕ)
is e±jmϕ. In ϑ, the problem is much more complicated, because Φm

p (ϑ) and Ψm
p (ϑ)

are solutions of the following equation;{
d

dϑ
sinϑ

d

dϑ
− m2

sinϑ
+ k2

t sinϑ

}
Φm
p (ϑ) (2.5)

considering a change of variable, x = cosϑ, it is possible to see that

ϑ = arccosx =⇒ dϑ = − 1√
1− x2

dx

so

dx

dϑ
= −
√

1− x2

Moreover,

d

dϑ
=

dx

dϑ

d

dx

and

sinϑ =
√

1− cos2 ϑ =
√

1− x2

Finally, substituting all these steps in (2.5), it is possible to find

{
−
√

1− x2
d

dx

[
−
√

1− x2
√

1− x2
d

dx

]
+
√

1− x2 k2
t −

m2

√
1− x2

}
Φm
p (x)

=

{
(1− x2)

d

dx

[
(1− x2)

d

dx

]
+ (1− x2)k2

t −m2

}
Φm
p (x)
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2. Computation of mode functions

The last equation, writing k2
t = p(p + 1) with p real in general, is known as

associated Legendre equation. Its solutions are associated Legendre functions of
order m and degree p, Pm

p (x). Considering TM case, instead of p it is smarter to
use a p′ degree, where the single apex recalls the fact that the parameter is referred
to TM polarization.

For TM modes, the differential problem which has to be solved is


{

(1− x2)
d

dx

[
(1− x2)

d

dx

]
+ (1− x2)p′(p′ + 1)−m2

}
Φm
p′ (x)

Φm
p′ (x) = 0 for x = x0 = cosϑ0

(2.6)

where ϑ0 is the flare angle. The solution of this problem is

Φm
p′ (x) = Pm

p′ (x)

The objective is to find the p′ value such that the boundary condition is satisfied.
For TE modes, the only difference is in the boundary condition, which is a

Neumann condition instead of a Dirichlet one.


{

(1− x2)
d

dx

[
(1− x2)

d

dx

]
+ (1− x2)p′′(p′′ + 1)−m2

}
Ψm
p′′(x)

dΦm
p′′(ϑ)

dϑ

∣∣∣∣
ϑ=ϑ0

= 0

(2.7)

where

Ψm
p′′(x) = Pm

p′′(x)

In this case the goal is to find the p′′ degree.

Boundary conditions

Both systems (2.6) and (2.7) introduce conditions only on the x = x0 point, without
specifying any boundary condition for the other integral end, which is, for the case
study, x = +1.

There are two kinds of boundary conditions which can be enforced, defining a
differential problem: numerical boundary conditions and behavioral boundary
conditions.

• Numerical boundary conditions are those conditions which specify the numeri-
cal value of the solution in a specific point. These conditions have the following
form:

af(x0) + b
d

dx
f(x)

∣∣∣∣
x=x0

= 0 (2.8)

if b = 0, (2.8) is a Dirichlet boundary condition, because it enforces the value
of the solution of the problem in a specific point x0 to equal zero. By contrast,
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2.3. Numerical methods for the solution of the associated Legendre equation

if a = 0, (2.8) is a Neumann condition, because it enforces the value of the
derivative in x = x0 to equal zero. Finally, the most general case is for a, b 6= 0,
which is the Robin condition case (also known as impedance conditions,
when applied on transmission lines, because it sets the value of the ratio of
a quantity and its derivative, so of the voltage in a point and its derivative,
which is the current).

• Behavioural boundary conditions are those conditions which does not specify
a specific value for the solution of the differential problem, but just enforce
a property for the solution. Examples of behavioral boundary conditions are
periodicity, regularity (N continuous derivatives) or symmetries. Many times
behavioral boundary conditions are implicitly satisfied simply by choosing ba-
sis functions for the representation of solutions which satisfy them.

This introduction is necessary because in the case study of this work there are one
numerical boundary condition for x = x0 (Dirichlet or Neumann/Robin, depending
on the analyzed equation), and one behavioral condition for x = 1.

2.3 Numerical methods for the solution of the as-

sociated Legendre equation

2.3.1 Introduction

Generating functions Φm
p′ (ϑ) and Ψm

p′′(ϑ) unfortunately are not evaluable easily with
non-integer p. However, the non-integer p case is very significative, because it occurs
almost every time that x 6∈ [−1, 1], so when x0 6= −1.

Therefore, the purpose of this section is to introduce numerical methods aimed
at solving (2.6) and (2.7), so to find p′, p′′, and the related generating functions.
The numerical methods used in this study belong to two main families, which are

• pseudospectral methods;

• spectral methods.

These methods were applied directly to the associated Legendre equation, in a
slightly modified form compared to (2.6) or (2.7), or to Gegenbauer equation, which
is a differential equation related with the associated Legendre one.

2.3.2 Associated Legendre equation

Starting from (2.6) or (2.7), it is possible to write the differential equation in a
slightly different way. Using the Leibnitz derivative formula and considering a
generic solution L(x) of the following equation,

d

dx

[
(1− x2)

d

dx

]
L(x) = (1− x2)

d2

dx2
L(x)− 2x

d

dx
L(x)
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2. Computation of mode functions

by substituting this expression in the equation and dividing all the members by
(1− x2), it is possible to find the following equation:

(1− x2)
d2

dx2
L(x)− 2x

d

dx
L(x) +

(
p(p+ 1)− m2

1− x2

)
L(x) = 0 (2.9)

Solutions of the associated Legendre equation, regular in ±1, are associated
Legendre polynomials Pm

n (x), if m and n are integer numbers. More in general, if
m→ µ, n→ p where p, µ ∈ R, solutions for the equation are associated Legendre
functions. m is the order of the function, and p is its degree. In all the considered
cases for this study, the order is always an integer number, so it will be represented
simply as m. By contrast, the degree is almost every time a non-integer number, so
it will be represented as p.

2.3.3 Gegenbauer equation

d2

dx2
L(x)− 2x

1− x2

d

dx
L(x) +

(
c

1− x2
− m2

(1− x2)2

)
L(x) = 0 (2.10)

This equation has two regular singular points, so it is possible to apply to it the
Fuchs-Frobenius method, which permits to find an analytical solution, so expansible
as Taylor series. The equation now is written in the following form:

d2

dx2
L(x) + p(x)

d

dx
L(x) + q(x)L(x) = 0

where

p(x) = − 2x

1− x2
q(x) =

c

1− x2
− m2

(1− x2)2

Now this equation must be modified, exploiting the fact that coefficients have par-
ticular singularities. So, it is possible to define two coefficients A(x) and B(x), for
the x = +1 discontinuity:

A(x) = (x− 1)p(x) = −(x− 1)
2x

(1− x)(1 + x)
=

2x

x+ 1

B(x) = (x− 1)2q(x) = (x− 1)2 c

(1− x)(1 + x)
− (x− 1)2 m2

(1− x)2(1 + x)2
=

= c
1− x
1 + x

− m2

(1 + x2)2

A(x) and B(x) are analytical functions for x = +1; in fact, it is possible to expand
them with Taylor series, because they are not singular anymore in this point. So,

A(x) =
∞∑
n=0

an (x− x0)n = a0 + a1 (x− 1)1 + a2 (x− 1)2 + ...

the coefficient a0 equals the function A(x), evaluated for x = 1:
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2.3. Numerical methods for the solution of the associated Legendre equation

a0 = A(1) =
2

1 + 1
= 1

the same idea must be applied on B(x):

B(x) =
∞∑
n=0

bn (x− x0)n = b0 + b1 (x− 1)1 + b2 (x− 1)2 + ...

where:

b0 = B(1) = c
1− 1

1 + 1
− m2

(1 + 1)2
=
m2

4

It may be proved2 the following indicial equation is satisfied:

λ0(r) = r2 + (a0 − 1) r + b0 = 0

in this equation, a0 = 1, b0 = m2

4
. Therefore, by substituting:

r2 − m2

4
= 0 =⇒ r = ±m

2

so, for the x = 1 case:

L(x) = (x− 1)
m
2

∞∑
n=0

cn (x− 1)
m
2

It is possible to repeat the same procedure in order to solve the x = −1 case and
take away the other discontinuity from the Legendre equation. This means that:

L(x) =
(
1− x2

)m
2 G(x) = f(x)G(x) (2.11)

where G(x) is an analytical function in the closed interval [−1, 1]. The last equation
suggests that it is better to perform a change of variable, substituting L(x) written
in (2.11) form, in order to obtain a differential equation with more regular solution.
Therefore, it is necessary to calculate some terms, as follows;

d

dx
L(x) = G(x)

d

dx
f(x) + f(x)

d

dx
G(x)

d2

dx2
L(x) = G(x)

d2

dx2
f(x) + 2

d

dx
f(x)

d

dx
G(x) + f(x)

d2

dx2
G(x)

where

d

dx
f(x) = −mx

(
1− x2

)m
2
−1

d2

dx2
f(x) = −m

(
1− x2

)m
2
−1

+ 2m
(m

2
− 1
)
x2
(
1− x2

)m
2
−2

2[7], section 14.4 (Solution of a Differential Equation in a Neighborhood of a Regular Singuar
Point)
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These results have to be substituted in (2.10):

(
1− x2

){
2mx2

(m
2
− 1
) (

1− x2
)m

2
−2 −mx

(
1− x2

)m
2
−1
}
G(x)+

+
(
1− x2

){
2
(
1− x2

)m
2 − 2mx

(
1− x2

)m
2
−1
} d

dx
G(x)+

+
(
1− x2

){(
1− x2

)m
2

} d2

dx2
G(x)−

+2x

{
−mx

(
1− x2

)m
2
−1
G(x) +

(
1− x2

)m
2

d

dx
G(x)

}
+

+

(
c− m2

1− x2

)(
1− x2

)m
2 G(x) = 0

With simple algebra it may be shown that:

• the second derivative coefficient is

(
1− x2

)m
2

+1

• the first derivative coefficient is

−2x (m+ 1)
(
1− x2

)m
2

• the function coefficient is

(
1− x2

)m
2

{
−m+ 2m

(m
2
− 1
) x2

1− x2
+ 2m

x2

1− x2
+ c− m2

1− x2

}
=

=
(
1− x2

)m
2

{
−m+m2 x2

1− x2
+ c− m2

1− x2

}
=

=
(
1− x2

)m
2
{
−m−m2 + c

}
Finally, it is possible to write the alternative form of (2.10) using these coeffi-

cients:

(
1− x2

) d2

dx2
G(x)− 2x (m+ 1)

d

dx
G(x) + (c−m(m+ 1))G(x) = 0 (2.12)

The most important advantage of working on (2.12) instead of (2.10) is the
fact that its solution is regular in the closed interval. Moreover, equation (2.11)
emphasizes an interesting aspect of the behavior of associated Legendre functions.
In fact, if m 6= 0, even without applying Dirichlet conditions, L(x) function will be
zero in x = ±1. Furthermore, this zero is generally not of first order, unless m = 2.

At this point it is possible to apply two different approaches; the first one, based
on the direct solution of associated Legendre equation, and the second one, based on
the solution of the modified equation. Equation (2.12) is the “Gegenbauer equation”.
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2.3. Numerical methods for the solution of the associated Legendre equation

2.3.4 Boundary conditions for Gegenbauer equation

Gegenbauer equation has to be solved in order to satisfy (2.6) or (2.7). About
the former’s one boundary conditions, there are no major problems; indeed, since
Dirichlet boundary conditions are homogeneous, the value of a or b of (2.8) is not
relevant. This is no longer true for Robin conditions, because in this case it is
mandatory to enforce the correct ratio a/b.

However, in order to find TE modes eigenvalues, Gegenbauer equation must not
be solved with Neumann conditions, because the equation which has to be solved
with a Neumann condition is the associated Legendre equation.

The following algebra leads to an expression of boundary conditions for Gegen-
bauer equations equivalent to the Neumann condition for associated Legendre equa-
tion.

From (2.7),

d

dϑ
L(cosϑ) =

dL(cosϑ)

d cosϑ

d(cosϑ)

dϑ
= − sinϑ

dL(cosϑ)

d cosϑ
=

= − sinϑ
dL(x)

dx

where x = cosϑ. By differentiating (2.11), it is possible to see that

dL(x)

dx
=

d

dx

[(
1− x2

)m
2 G(x)

]
=

= −2x
m

2

(
1− x2

)m
2
−1
G(x) +

(
1− x2

)m
2

dG(x)

dx

This equation has to be evaluated in x = x0 = cosϑ0. This means that

dG(x)

dx

∣∣∣∣
x=x0

= −x0 (1− x0)
m
2
−1G(x0) +

(
1− x2

0

)m
2

dG(x)

dx

∣∣∣∣
x=x0

(2.13)

This condition has to be applied to Gegenbauer equation solved in the canonical
interval ξ (see A.6); taking into account this, (2.13) becomes

dG(x)

dx

∣∣∣∣
x=x0

= −x0

(
1− x2

0

)m
2
−1
G(x0) +

(
1− x2

0

)m
2

1

J1

dG(x)

dx

∣∣∣∣
x=x0

(2.14)

where J1 comes from (A.30)

2.3.5 Pseudospectral methods

Pseudospectral methods are based on interpolation; the basic idea is to interpolate
a function evaluated on a set of points which are commonly called nodes. This
means that, given a function f(x) which is for instance the solution of a differential
equation, it has to be represented with an approximated fN(x). The representation
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of a generic function f(x) as a sum of a finite number of other functions ϕn(x)
implies an approximation of the solution of the differential equation, because the
generic f(x) belonging to an infinite-dimensional space of functions is represented
with functions belonging to a finite subset of the former space of functions. So,
fN(x) may be written as follows;

fN(x) =
N∑
n=0

fnϕn(x) (2.15)

ϕn(x) can be almost every function at this step; depending on the type of dif-
ferential equation which has to be solved and on boundary conditions which define
the domain of the solution of the equation, there are different suitable choices. For
instance, if the solution of the differential equation has to be periodic, ϕn(x) can
be a sine or cosine function. Generally, it is a good criterium to choose functions
similar to the expected solution; for instance, if the expected unknown function is a
polynomial, it is better to use polynomials for the representation.

The criterium for building the system is to find functions which satisfy exactly
the equation in chosen nodes. In other words,

fN(xn) = f(xn) = fn

This is the philosophy of pseudospectral and collocation methods. As a matter
of fact, the name collocation comes from the fact that the equation is collocated, so
it is exactly satisfied in the nodes. This method is applied to a differential equation
in order to build a finite-dimensional eigenvalue problem. An eigenvalue problem
has two outputs: eigenvalues and eigenvectors. Eigenvalues λ are strictly related
with p, because

λ = p(p+ 1)

for both p′ and p′′ values. On the other hand, eigenvectors contain the interpo-
lating values of the function, evaluated in the nodes. These values are used by an
interpolating function in order to evaluate the plot points for the function.

Equation (2.15) may be misleading; fn are not weights, because they are the
values of the function f(x) in nodes {xn}. The meaning of {fn} is the most important
difference between pseudospectral methods and spectral methods.

The unknown of the system for these methods is the set of values {fn}; in fact,
the set of interpolating functions {ϕn(x)} is chosen, just like the set of nodes {xn}.

These methods are called “pseudospectral” because (2.15) recalls a spectral rep-
resentation, but it is not exactly spectral. Once upon a time the Galerkin method
was called spectral and, since pseudospectral methods are identical to the Galerkin
method if inner product integrals are evaluated using Gaussian integration formulae,
the label “pseudospectral” is reasonable. Moreover, Gaussian integration formulae
are the most efficient scheme for numerical quadrature for Galerkin method, using
the roots of functions of the same kind of the basis functions. For instance, if basis
functions are Chebyshev polynomials, the best choice for quadrature nodes (which
are also the pseudospectral grid nodes) are the zeroes of Chebyshev polynomials.
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2.3. Numerical methods for the solution of the associated Legendre equation

Implementation notes for the case study

Pseudospectral methods were implemented in this work using [24]. This consists of
a suite of functions which evaluates differentiation matrices with different kinds of
interpolating nodes and functions.

There are some types of functions, for each kind of interpolating functions:

• functions which evaluate interpolation nodes (for instance Chebyshev nodes,
even-spaced nodes, Laguerre nodes);

• functions which evaluate differentiation matrices for chosen nodes and inter-
polating functions in given nodes;

• functions which exploit previous functions to implement boundary conditions
on differentiation matrices.

The best choice for problems in bounded intervals, such as ξ ∈ [−1, 1] are Cheby-
shev nodes and interpolating functions. This is also the choice performed in this
case study.

Boundary conditions deserve some extra explanations; in the case study it is nec-
essary to enforce one numerical boundary condition, for x = x0, and one behavioral
boundary condition for the other interval end.

Most of functions necessary for the implementation of these methods were already
inside of the suite, and they are described in [24]. Unfortunately, the case of one
numerical condition and one behavioral condition was not considered by the authors
of the suite, therefore it was necessary to edit a function in order to introduce it.

First of all, [24] explains that the implementation of Dirichlet functions is based
on the elimination of a row from every differentiation matrix. Then, if the boundary
condition is homogeneous, the work is done; otherwise, if the boundary condition
is not homogeneous (case not interesting for this study), it is necessary to add
other terms to the matrix equation. Anyway, in order to introduce a behavioral
condition, an idea may simply be to remove a Dirichlet condition, so to maintain
the row which should be deleted. For instance, if it is necessary to have a numerical
Robin condition on ξ = −1 and a behavioral condition on ξ = +1, the idea is to
take the case from the original code where there is a Dirichlet condition in the right
bound and a Robin condition in the left bound, and then take away from it the
Dirichlet condition simply by maintaining the erased row in the original code.

2.3.6 Spectral methods

The second family of methods implemented in order to evaluate the modal functions
was the spectral one. In spectral methods a function f(x), solution of a differential
equation, is expanded as a series of functions.

f(x) =
nmax∑
n=0

anun(x) (2.16)

In this case an are not the values of the f(x) function evaluated in some points,
but they are weights of the linear combination. In other words, now each an
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quantifies the importance of the un(x) function contribution in the representation
of f(x) (like Fourier coefficients in Fourier series quantify how significative is a
frequency contribution compared with others).

Generalities about spectral methods

Spectral methods involve three elements:

• expansion functions un(x); {un} is the set of functions used for the represen-
tation of the solution of the differential equation, f(x);

• test functions; these are functions used to project a function on the expansion
functions.

• the inner product; it is characterized by the weight used in order to perform
projection.

In order to fix these ideas, it is possible to consider a symbolic example. Given
f(x) represented as

f(x) =
nmax∑
n=0

anun(x)

and given for example g(x) = f ′(x) (instead of the derivative operation it is
possible to apply almost any linear operator, such as multiplication by a constant,
by a variable, by the cosine of a variable and so on), represented in the same basis
{un(x)}, but with different weight coefficients bn

g(x) =
nmax∑
n=0

bnun(x)

It is interesting to relate an coefficients with bn coefficients, in order to approxi-
mate the differential equation with a matrix equation. This last expression can be
written as

nmax∑
n=0

bnun(x) =
nmax∑
n=0

an
d

dx
un(x)

Generally, in order to find a relationship between {an} and {bn}, the method is
based on the study of the projection of the left-hand side and of the right-hand side
on test functions, which are for instance (just in this example) functions of the same
type, um.

〈
nmax∑
n=0

bnun(x), um(x)〉 = 〈
nmax∑
n=0

an
d

dx
un(x), um(x)〉, m = 0 to nmax

Now, considering for example an inner product with weight 1, the result is
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2.3. Numerical methods for the solution of the associated Legendre equation

∫ nmax∑
n=0

bnun(x)um(x)dx =

∫ nmax∑
n=0

an
d

dx
un(x)um(x)dx, m = 0 to nmax

so

nmax∑
n=0

bn

∫
un(x)um(x)dx =

nmax∑
n=0

an

∫
d

dx
un(x)um(x)dx, m = 0 to nmax (2.17)

This equation can be represented with a matrix equation. Given

a ,


a0

a1
...

anmax

 b ,


b0

b1
...

bnmax


and a M matrix defined as

M , 〈 d

dx
un(x), um(x)〉, m = 0 to nmax

and finally the Gram matrix G defined as

G , 〈un(x), um(x)〉, m = 0 to nmax

it is possible to write (2.17) as follows

G b = M a (2.18)

the relationship which relates b with a is simply

b =
(
G−1 M

)
b

= D−1 b (2.19)

This is the general procedure for the computation of bn coefficients starting from
an ones.

Some remarks:

• the choice of the inner product weight depends on chosen functions un(x); in
fact, it is better to use the weight which guarantees orthonormality between

un (for instance, for Chebyshev polynomials, it is wn = (1− x2)
− 1

2 ); if there
is orthonormality, the projection of un on um is non-zero only when n = m;
moreover, it equals 1, in this case. This means that if the inner product is well-
chosen, the Gram matrix equals the identity matrix. M , in this case, is the
matrix which represents the discretization of the operator (in this example, the
derivative operator). The inner product choice may be fundamental because
the inversion of a matrix is very expensive, and it introduces numerical errors
in the final results;
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• it is possible to use Gaussian quadrature formulae with a polynomial basis,
because they produce exact results with an appropriate number of nodes
(2N + 1 nodes, where N is the order of polynomials).

The method which will be described is equivalent to a “general” spectral method,
with a difference. Relationships between an and bn will not be found with analyt-
ical calculations (calculating inner products), but with algebraic calculations, by
exploiting some properties of basis functions. The result of this approach are ex-
act matrices (except for the last term) even without using Gaussian quadrature
formulae.

This procedure equals the general spectral method using the same set of functions
as test and expansion functions, and as inner product the one which ensures the
orthonormality of the function (and so that G = I ).

Moreover, all basis functions which will be used as expansion functions are poly-
nomials. This is interesting, because the operators of interest here are applied on
these polynomials are multiplication for x or x2, or differentiation. These operators
are applied on polynomials, but they return polynomials.Just like pseudospectral
methods, this method is used to build an eigenvalue problem.Eigenvectors coeffi-
cients are weights which have to be multiplied by the single basis functions.

For spectral methods, it may be interesting to plot (in logarithmic scale) the n-th
component of the eigenvector versus n. In fact, if the method is well-constructed,
the first components will be high, but then they will decrease sharply; this because
if the method suits well the differential equation it is possible to use few components
to represent well the solution.

Eigenvectors can provide useful informations about the quality of a method.
However, it is better to implement a convergence study, in order to quantify the
actual performances of the numerical method. Obviously, for general problems,
increasing the number of expansion functions used N , the quality of results improves.

Enforcing boundary conditions

Given the representation (2.16), it may be necessary to enforce a numerical bound-
ary condition at x = x0. Considering for instance a Dirichlet boundary condition
(Neumann/Robin conditions are almost identical to implement), it is necessary to
require that

f(x0) = 0 =⇒
nmax∑
n=0

anun(x0) = 0

renaming cn = un(x0), this condition is translated in the following one

nmax∑
n=0

ancn = 0 (2.20)

where cn are values of the basis function in x = x0. (2.20) may be written in
matrix form as follows:
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[
c0 c1 . . . cBC

]


a0

a1
...

anmax

aBC


or

[
c0 cBC

] [ a
aBC

]
this last equation may be written as

c0 a + cBC aBC = 0

In this equation, c0 and cBC are known, while a and aBC are unknown. How-
ever, by modifying this equation it is possible to obtain an equation which can be
added in the matrix which discretizes the operator; this equation enforces boundary
condition(s). In fact, by inverting it, it is possible to find:

aBC = − (cBC)−1 c0a (2.21)

Considering (2.19),

b = D a

In order to enforce boundary conditions on this matrix D , the idea is to introduce
a partition in it. 

b0

b1
...

bnmax

bBC

 =

 DNBC

DBC




a0

a1
...

anmax

aBC


The last matrix equation can be written as follows:

b + bBC =
[
DNBC a + DBCaBC

]
where DNBC is D without the last column and row. By applying to this equa-

tion the (2.21), it is possible to find the matrix formula for the implementation of
boundary conditions to the discretized operator:

b + bBC =
[
DNBCa − DBC (cBC)−1 c0a

]
=

=
[
DNBCa − DBC (cBC)−1 c0

]
a (2.22)

D may be the discretization matrix of every operator: single, double or higher
order differentiation, multiplication for polynomials and so on.
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The procedure for the application of Neumann/Robin conditions is almost the
same; the only difference is in c0 and cBC, which contains d

dx
f(x)

∣∣
x=x0

coefficients,

or more in general (2.8) coefficients. It is necessary to know values of basis functions
in x = x0; for this reason, it is advisable to use the canonical interval ξ instead of
the natural one, x, for the implementation, and then use a handbook (for example
[1]) in order to find the values of function in ξ = ±1.

A remark on boundary conditions

The previous subsection explained how to enforce a boundary condition with the
spectral method implemented in this study. However, it is very important to be
careful every time that this procedure is applied; these conditions have to be applied
only being sure that it is necessary.

In order to fix the idea, it is now proposed an example. Given the multipication-
by-ξ matix D

ξ
and the differentiation matrix D d

dξ

, it may be necessary to represent

the discretized operator

ξ
d

dξ
[f(ξ)]

where f(ξ) must satisfy boundary conditions. In this case, the method explained
in the previous subsection must be applied to D d

dξ

matrix, but not to D
ξ

matrix;

in fact, the equivalent discretized operator is given by the matrix product Mξ D d
dξ

.

The first operator applied to f(ξ) is the discretized differentiation, which returns a
function which is applied to the discretized multiplication operator. Differentiation
returns a function which does not have to satisfy Dirichlet boundary conditions; in
fact, it is f(ξ) the one which does, not d

dξ
f(ξ). So, the discretized multiplication

operator must be unedited, in order to obtain the correct representation of the
equivalent operator.

2.3.7 Legendre spectral method

For each spectral method it is necessary to find D matrices which relate the an
coefficients of the f(x) representation (2.16), with the bn ones. In this case study,
differential equations are the associated Legendre equation or the Gegenbauer equa-
tion, which have, as operators, xf(x), x2f(x), d

dx
f(x), d2

dx2
f(x). In this subsection

and in the following ones are shown some proofs to find some of these discretization
matrices. Some of final results can be compared with [9].

Legendre spectral method is a numerical method which involves Legendre poly-
nomials as expansion and test functions; this means that (2.16) becomes

f(x) =
nmax∑
n=0

anPn(x)

In addition, it is better to do calculations for associated Legendre polynomials
as basis functions; these degenerate in Legendre polynomials for m = 0, but results
are more general. So
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f(x) =
nmax∑
n=0

anPm
n (x) (2.23)

xf(x) matrix

Now, the objective is to represent xf(x) using Pm
n (x) as expansion functions.

xf(x) =
nmax∑
n=0

anxPm
n (x) =

nmax∑
n=0

bnPm
n (x)

now, by inverting (A.3), which is here recalled,

(
1− x2

) d

dx
Pm
n (x) = (n+m)Pm

n−1(x)− nxPm
n (x)

it is possible to find xPm
n (x)

xPm
n (x) =

n−m+ 1

2n+ 1
Pm
n+1(x)− n+m

2n+ 1
Pm
n−1(x) (2.24)

so, by substituting

xf(x) =
nmax∑
n=m

an

[
n−m+ 1

2n+ 1
Pm
n+1 +

n+m

2n+ 1
Pm
n−1(x)

]
= T1 + T2

Now it is necessary to change indexes of the associated Legendre polynomials in
order to obtain all the times a Pm

n (x) function; this is necessary in order to write
the last equation in (2.23) form.

• T1 case

nmax∑
n=m

an
n−m+ 1

2n+ 1
Pm
n+1(x)

so

n+ 1 = n′ =⇒ n = n′ − 1

the equation may be re-written as

nmax∑
n′=m+1

an′−1
n′ −m
2n′ − 1

Pm
n′(x)

• T2 case

nmax∑
n=m

an
n+m

2n+ 1
Pm
n−1(x)
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so

n− 1 = n′′ =⇒ n = n′′ + 1

the equation may be re-written as

nmax∑
n′′=m−1

an′′+1
n′′ + 1 +m

2n′′ + 3
Pm
n′′(x)

To sum up, by substituting n′′ and n′ with n, it is possible to find bn as function
of an as

bn =
n−m
2n− 1

an−1 +
n+ 1 +m

2n+ 3
an+1 = cn−1an−1 + cn+1an+1 (2.25)

This system can be written as a matrix; in fact, it is possible to write this
equation as follows 

b0

b1

b2
...

 =


0 c2 0 · · ·
c0 0 c3 · · ·
0 c1 0 c4 · · ·
...

. . . . . . . . .



a0

a1

a2
...

 (2.26)

x2f(x) matrix

In this case the procedure is quite similar to the previous one;

x2f(x) =
nmax∑
n=m

anx
2Pm

n (x) =
nmax∑
n=m

anx
2Pm

n (x)

It is possible to use again (2.24) relationship, but it has to be used twice. In fact

x2Pm
n (x) =

n−m+ 1

2n+ 1
xPm

n+1(x) +
n+m

2n+ 1
xPm

n−1(x)

so, by using again it, being careful with the indexes,

xPm
n+1(x) =

n−m+ 2

2n+ 3
Pm
n+2(x) +

n+m+ 1

2n+ 3
Pm
n (x)

xPm
n−1(x) =

n−m
2n− 1

Pm
n (x) +

n− 1 +m

2n− 1
Pm
n−2(x)

by substituting

n−m+ 1

2n+ 1

[
n−m+ 2

2n+ 3
Pm
n+2(x) +

n+m+ 1

2n+ 3
Pm
n (x)

]
+

+
n+m

2n+ 1

[
n−m
2n− 1

Pm
n (x) +

n− 1 +m

2n− 1
Pm
n−2(x)

]
so, considering T1, T2 and T3 cases
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• T1:

T1 =
nmax∑
n=m

an
n−m+ 1

2n+ 1

n−m+ 2

2n+ 3
Pm
n+2(x)

with the change of indexes, same procedure of xf(x) case,

=
nmax∑

n′=m+2

an′−2
n′ − 2−m+ 1

2(n′ − 2) + 1

n′ − 2−m+ 2

2(n′ − 2) + 3
Pm
n′(x)

=
nmax∑

n′=m+2

an′−2
n′ −m− 1

2n′ − 3

n′ −m
2n′ − 1

Pm
n′(x)

• T2,

T2 =
nmax∑
n=m

an

[
n−m+ 1

2n+ 1

n+m+ 1

2n+ 3
+
n+m

2n+ 1

n−m
2n− 1

]
Pm
n

• T3,

T3 =
nmax∑
n=m

an
n+m

2n+ 1

n− 1 +m

2n− 1
Pn−2(x) =

=
nmax∑
n′′=m

an′′+2
n′′ + 2 +m

2n′′ + 5

n′′ + 1 +m

2n′′ + 3
Pm
n′′(x)

By substituting all these expressions, it is possible to find

bn =
n−m− 1

2n− 3

n−m
2n− 1

an−2 +

(
n−m+ 1

2n+ 1

n+m+ 1

2n+ 3
+
n+m

2n+ 1

n−m
2n− 1

)
an+

+
n+ 2 +m

2n+ 5

n+ 1 +m

2n+ 3
an+2

= cn−2an−2 + cnan + cn+2an+2

(2.27)
b0

b1

b2
...

 =


c0 0 c2 · · ·
0 c1 0 c3 · · ·
c0 0 c2 0 c4
...

. . . . . . . . . . . .



a0

a1

a2
...

 (2.28)
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2. Computation of mode functions

Expressions of Legendre matrices

Starting from previous calculations it is possible to find coefficients for Legendre
polynomials expansion. In fact, considering (2.25) and (2.27) with m = 0, it is
trivial to find

• Lf(x) = xf(x)

bn =
n

2n− 1
an−1 +

n+ 1

2n+ 3
an+1 = cn−1an−1 + cn+1an+1

• Lf(x) = x2f(x)

bn =
n− 1

2n− 3

n

2n− 1
an−2 +

(
n+ 1

2n+ 1

n+ 1

2n+ 3
+

n

2n+ 1

n

2n− 1

)
an+

+
n+ 2

2n+ 5

n+ 1

2n+ 3
an+2

Moreover, for derivatives cases, from [9],it is possible to find

• Lf(x) = d
dx
f(x)

bn = (2n+ 1)
nmax∑
p=n+1
p+n odd

ap (2.29)

• Lf(x) = d2

dx2
f(x)

bn =

(
n+

1

2

) nmax∑
p=n+2
p+n even

[p(p+ 1)− n(n+ 1)] ap (2.30)

2.3.8 Gegenbauer spectral method

The goal of this subsection is to find discretization matrices, using as basis functions
Gegenbauer polynomials C

(λ)
n (x).

As written in Appendix A.4, (A.14) here recalled

(
1− x2

) d2

dx2
C(λ)
κ (x)− (2λ+ 1)

d

dx
C(λ)
κ (x) + κ(κ+ 2λ)C(λ)

κ (x)

is strictly related with the equation (2.12); considering the latter one, written as

(
1− x2

) d2

dx2
G(x)− 2 (m+ 1)x

d

dx
G(x)+

+ [(l +m) (l +m+ 1)−m (m+ 1)]G(x) = 0
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2.3. Numerical methods for the solution of the associated Legendre equation

with λ = m+ 1
2
, it is possible to see that{

2λ+ 1 = 2m+ 2 = 2(m+ 1)

κ (κ+ 2λ) = κ (κ+ 2m+ 1)

On the other hand, from (2.12), it is possible to see that

(l +m) (l +m+ 1)−m (m+ 1) =

=l2 + l(m+ 1) +ml +m(m+ 1)−m(m+ 1) =

=l2 + 2ml + l = l (l + 2m+ 1)

with κ = l, those two equations are the same. This means that calling (2.12) the
“Gegenbauer equation” is absolutely correct.

The idea of choosing Gegenbauer polynomials was born from the fact that, being
Gegenbauer polynomials the solution of Gegenbauer equation, it may be a good idea
to use them as expansion functions.

xf(x) matrix

Considering (A.15) here recalled,

κC(λ)
κ (x) = 2(κ+ λ− 1)xC

(λ)
κ−1(x)− (κ+ 2λ− 2)C

(λ)
κ−2(x), κ ≥ 2

with κ = n, it is possible to use the following representation:

f(x) =
nmax∑
n=0

anC(λ)
n (x) (2.31)

so, for the xf(x) operator,

xf(x) =
nmax∑
n=0

anxC(λ)
n (x) =

nmax∑
n=0

bnC(λ)
n (x)

by applying the recurrence relationship,

xC(λ)
n (x) =

1

2(n+ λ)

[
(n+ 1)C

(λ)
n+1(x) + (n+ 2λ− 1)C

(λ)
n−1(x)

]
it is possible to identify T1 and T2 terms

• T1:

T1 =
nmax∑
n=0

an
n+ 1

2(n+ λ)
C

(λ)
n+1(x) =

nmax∑
n′=1

an′−1
n′

2(n′ − 1 + λ)
C

(λ)
n′ (x)

• T2:

T2 =
nmax∑
n=0

an
n+ 2λ− 1

2(n+ λ)
C

(λ)
n−1(x) =

nmax−1∑
n′′=0

an′′+1
n′′ + 2λ

2(n′′ + λ+ 1)
C

(λ)
n′′ (x)
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2. Computation of mode functions

In conclusion,

bn = an−1
n

2(n− 1 + λ)
+ an+1

n+ 2λ

2(n+ λ+ 1)
(2.32)

The structure is the same of (2.26).

x2f(x) matrix

The purpose of this subsection is to evaluate the x2f(x) discretized matrix. Once
again,

x2f(x) =
nmax∑
n=0

anx
2C(λ)

n (x) =
nmax∑
n=0

bnC(λ)
n (x)

but

x2C(λ)
n (x) = x

1

2(n+ λ)

[
(n+ 1)C

(λ)
n+1(x) + (n− 1 + 2λ)C

(λ)
n−1(x)

]
this can be re-written as follows

=
1

2(n+ λ)

{
n+ 1

2(n+ 1 + λ)

[
(n+ 2)C

(λ)
n+2(x) + (n+ 2λ)C(λ)

n (x)
]

+

+
n− 1 + 2λ

2(n+ λ− 1)

[
nC(λ)

n (x) + (n− 2 + 2λ)C
(λ)
n−2(x)

]}
This permits to re-write the sum as follows

∑{
anC

(λ)
n+2(x)

n+ 2

2(n+ λ)

n+ 1

2(n+ 1 + λ)
+ anC

(λ)
n−2(x)

n− 2 + 2λ

2(n+ λ)

n− 1 + 2λ

2(n+ λ− 1)

+ anC(λ)
n (x)

[
n+ 2λ

2(n+ λ)

n+ 1

2(n+ 1 + λ)
+

n

2(n+ λ)

n− 1 + 2λ

2(n+ λ− 1)

]}
so, there are three cases.

• T1:

T1 =
nmax∑
n=0

anC
(λ)
n+2(x)

n+ 2

2(n+ λ)

n+ 1

2(n+ 1 + λ)
=

=
nmax∑
n′=2

an′−2C
(λ)
n′ (x)

n′

2(n′ − 2 + λ)

n′ − 1

2(n′ − 1 + λ)

• T2:

T2 = anC(λ)
n (x)

[
n+ 2λ

2(n+ λ)

n+ 1

2(n+ 1 + λ)
+

n

2(n+ λ)

n− 1 + 2λ

2(n+ λ− 1)

]
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2.3. Numerical methods for the solution of the associated Legendre equation

• T3:

T3 = anC
(λ)
n−2(x)

n− 2 + 2λ

2(n+ λ)

n− 1 + 2λ

2(n+ λ− 1)

= an′′+2C
(λ)
n′′ (x)

n′′ + 2λ

2(n′′ + 2 + λ)

n′′ + 1 + 2λ

2(n′′ + 1 + λ)

finally,

bn = an−2
n

2(n− 2 + λ)

n− 1

2(n− 1 + λ)
+ an+2

n+ 2λ

2(n+ 2 + λ)

n+ 1 + 2λ

2(n+ 1 + λ)
+

+ an

[
n+ 2λ

2(n+ λ)

n+ 1

2(n+ 1 + λ)
+

n

2(n+ λ)

n− 1 + 2λ

2(n+ λ− 1)

] (2.33)

In this case, the matrix structure is the same of (2.28).

Differentiation matrices

Starting from (A.13) here recalled,

d

dx

[
C

(λ)
κ+1(x)− C

(λ)
κ−1(x)

]
= 2(κ+ λ)C(λ)

κ (x)

= 2λ
[
C(λ+1)
κ (x)− C

(λ+1)
κ−2 (x)

]
κ ≥ 1,C

(λ)
−1(x) = 0

it is possible to prove the relationship between an and bn, where bn are coefficients
of the derivative of the function. In other words, given

d

dx
f(x) =

nmax∑
n=0

an
d

dx
C(λ)
n (x) =

nmax∑
n=0

bnC(λ)
n (x)

In order to find the relationship between bn and an an idea may be to write
coefficients of left hand side and right left side members, using for the right hand
side the relationship (A.13).

• For the left hand side member, first coefficients are

a0
d

dx
C

(λ)
0 + a1

d

dx
C

(λ)
1 + a2

d

dx
C

(λ)
2 + a3

d

dx
C

(λ)
3 + ...

• For the right hand side member,
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2. Computation of mode functions

b0

(
1

2λ

d

dx
C

(λ)
1 −

d

dx
C

(λ)
−1

)
+

+b1

(
1

2(1 + λ)

d

dx
C

(λ)
2 −

1

2(1 + λ)

d

dx
C

(λ)
0

)
+

+b2

(
1

2(2 + λ)

d

dx
C

(λ)
3 −

1

2(2 + λ)

d

dx
C

(λ)
1

)
+

+b3

(
1

2(3 + λ)

d

dx
C

(λ)
4 −

1

2(3 + λ)

d

dx
C

(λ)
2

)

At this point, remembering that C
(λ)
n = 0 for n < 1, it is necessary to identify

an coefficients by grouping all terms with same C
(λ)
n functions; in other words

a1 =
b0

2λ
− b2

2(2 + λ)

a2 =
b1

2(1 + λ)
− b3

2(3 + λ)

a3 =
b2

2(2 + λ)
− b4

2(4 + λ)

By watching these terms it is possible to identify a pattern, a recursive relation-
ship between coefficients, which is

an =
bn−1

2(n− 1 + λ)
− bn+1

2(n+ 1 + λ)
(2.34)

It is possible to prove that the solution of this recurrence relationship is

bn = 2 (n+ λ)
∞∑
k=1

an+2k−1 (2.35)

In fact, by substituting (2.35) in (2.34), it is possible to find:

bn+1 = 2(n+ 1 + λ)
∞∑
k=1

an+2k

bn−1 = 2(n− 1 + λ)
∞∑
k=1

an+2k−2

so

an =
∞∑
k=1

[an+2k−2 − an+2k] =

= an − an+1 + an+2 − an+4 + an+4 + ... = an
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2.3. Numerical methods for the solution of the associated Legendre equation

From (2.35), instead of 2(n+1) as expected from Legendre polynomial expansion,
there is 2(n+λ). This final result is remarkable; in fact, Legendre spectral differen-
tiation matrices and Gegenbauer spectral differentiation matrices are very related.
Furthermore, it is possible to find that they satisfy the following relationships;

• Lf(x) = d
dx
f(x)

bn = (2n+ 2λ)
nmax∑
p=n+1
p+n odd

ap (2.36)

• Lf(x) = d2

dx2
f(x)

bn = (n+ λ)
nmax∑
p=n+2
p+n even

[p(p+ 2λ)− n(n+ 2λ)] ap (2.37)

which are basically the same of Legendre method, substituting 1↔ λ.
As a final observation, it may be useful to say that all Gegenbauer matrices

degenerate in Legendre matrices, for λ = 1
2
. This is obvious, because in this case

m = 0, so, as already known from (A.8), the two polynomial families are equal.

2.3.9 Normalized Gegenbauer spectral method

Due to the fact that Gegenbauer polynomials near to the boundaries ±1 have high
value compared to central zone ones, an idea may to normalize those polynomials,
used as expansion functions, in order to try to reduce this problem.

From [1], it is possible to find that

hn =

∫ 1

−1

[
C(λ)
n (x)

]2
dx =

π 21−2λΓ(n2λ)

n!(n+ λ) [Γ(λ)]2
, λ 6= 0, λ > −1

2
(2.38)

Γ(x) is the Euler’s Gamma function; it is related with the factorial function,
because, for x = n, n ∈ N,

Γ(n+ 1) = n! (2.39)

In this case study, Gegenbauer polynomials are used as expansion functions for
particular cases. Since m is an integer number, m ≥ 0, and λ = m+ 1

2
, it is possible

to simplify (2.38); this is useful because it is better to avoid the computation of Γ(),
which may return huge numbers. More in details, λ can assume only very specific
values;

λ = m+
1

2
,m = 0, 1, 2....

so, the Gamma function at the numerator may be re-written as

Γ(n+ 2λ) = (n+ 2λ− 1)!
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2. Computation of mode functions

because (n + 2λ − 1) is always an integer. Furthermore, it is possible to write
this expression as follows:

(n+ 2λ− 1)! =
2λ−1∏
i=1

(n+ i)n! (2.40)

This means that (2.38) may be re-written as

hn =
π 21−2λ

(n+ λ) [Γ(λ)]2

2λ−1∏
i=1

(n+ i) (2.41)

Using (2.38) it is possible to re-write the spectral representation for Gegenbauer
polynomials (2.31) as follows

f(x) =
nmax∑
n=0

anC(λ)
n (x) =

nmax∑
n=0

AnC
(λ)
n,normalized(x) =

nmax∑
n=0

Anh
− 1

2
n C(λ)

n (x) (2.42)

where An are weights for normalized Gegenbauer polynomials.
These coefficients {An} are related with {an}. First of all it is fundamental

to recognize that a representation similar to (2.42) is satisfied also for bn and Bn

coefficients, about the representation of the discretization matrix of Lf(x).

Lf(x) =
nmax∑
n=0

anLC(λ)
n (x) =

nmax∑
n=0

bnC(λ)
n (x)

where

nmax∑
n=0

bnC(λ)
n (x) =

nmax∑
n=0

BnC
(λ)
n,normalized(x) =

nmax∑
n=0

Bnh
− 1

2
n C(λ)

n (x)

so

an = Anh
− 1

2
n

bn = Bnh
− 1

2
n

(2.43)

This is true for every Lf(x). Furthermore, considering for instance (2.32), it is
possible to write

Bnh
− 1

2
n = An−1h

− 1
2

n−1

n

2(n− 1 + λ)
+ An+1h

− 1
2

n+1

n+ 2λ

2(n+ λ+ 1)

so, for this case,

Bn = An−1

√
hn
hn−1

n

2(n− 1 + λ)
+ An+1

√
hn
hn+1

n+ 2λ

2(n+ λ+ 1)

This means that, in this case,

46



2.3. Numerical methods for the solution of the associated Legendre equation

Cn−1 = cn

√
hn
hn−1

Cn+1 = cn

√
hn
hn+1

These observations are interesting not just for this case, but also for other cases:
x2, first derivative, second derivative.

An interesting observation is that most of the time the direct computation of hn
is redundant, because expressions contain the ratio of two hi,j, i 6= j. Starting from
(2.41), it is possible to evaluate

hn
hp

=

π 21−2λ

(n+λ)[Γ(λ)]2

∏2λ−1
i=1 (n+ i)

π 21−2λ

(p+λ)[Γ(λ)]2

∏2λ−1
i=1 (p+ i)

Since λ is the same in both numerator and denominator, this equation may be
re-written as

hn
hp

=
p+ λ

n+ λ

∏2λ−1
i=1 (n+ i)∏2λ−1
i=1 (p+ i)

(2.44)

This expression is much more useful compared to the previous one, because it
does not contain Γ() functions or exponentials, so it is cheaper to calculate.

2.3.10 Associated Legendre spectral method

The last spectral method that could be used in order to find the modal critical
constants is the solution of the associated Legendre differential equation using of
associated Legendre functions as expansion functions. Unfortunately, the use of
these polynomials is very tricky; as a matter of fact, the procedure used up to this
subsection was based on the interval mapping of the differential equation in ξ and on
the solution of the differential equation in that interval. It is impossible to apply this
procedure to associated Legendre polynomials, because they equal zero in ξ = ±1
boundaries, so, considering (2.22), there is a divide-by-zero operation.

An alternative at this point might be the solution of the differential problem on
x ∈ [−1, 1] interval, without performing the interval mapping in ξ; then, instead
of enforcing the value of the function on the boundary, it is possible to work on
x0, considering that c0 and cBC are known, being Pm

n (x) known for integer n,m.
However, this method is impossible to apply too. In fact, Pn

m(x) are orthogonal
polynomials just if considered on [−1, 1] interval. So, considering boundary con-
ditions which limit the domain on [x0, 1], associated Legendre polynomials are not
independent anymore. In fact, the boundary condition must enforce a first order
zero in x = x0, which is different from the zero of order dependent on m. So, by us-
ing numerical integration and by evaluating the Gram matrix of these polynomials,
it may be observed that it has many singular values, which reveal the presence of
linear dependence.

To sum up, due to these considerations, the idea of using associated Legendre
polynomials as expansion functions was abandoned.
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2. Computation of mode functions

2.3.11 Associated Legendre functions implementation

On [25]3, it is possible to find a series expansion of associated Legendre functions of
real degree.This expression is:

Pm
p (x) =(−1)m

1

2mm!

(
1− x2

)m
2

Γ(p+m+ 1)

Γ(p−m+ 1)
∞∑
k=0

(−p+m)k (p+ 1 +m)k
k!(m+ 1)k

(
1− x

2

)k
(2.45)

where (x)k is the Pockhammer symbol, defined as

(x)k ,
Γ(x+ k)

Γ(x)
(2.46)

Unfortunately, a routine implementing this formula can not be very accurate,
because most significant terms of the series may have the order or magnitude of
106 for some values of p. Moreover, these terms have alternate sign. This means
that the final result of the series can not be as precise as the ones calculated by the
previously shown numerical methods, where there are less numerical cancellation
phenomena.

2.3.12 Visualization of some eigenvectors

With these implemented methods it is possible to obtain both eigenvalues and eigen-
vectors. The most significant case is for m = 1, since the structure is usually excited
by a circular waveguide with its fundamental mode (which is the TE11). Some
examples of curves are drawn here.

3(4.6.14), (4.6.15), (4.6.16), (4.6.17), (4.6.18)
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Figure 2.4: TM mode function relative to the first eigenvalue, m = 1, ϑ0 = 10◦
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Figure 2.5: TM mode function relative to the second eigenvalue, m = 1, ϑ0 = 10◦

50



2.3. Numerical methods for the solution of the associated Legendre equation

0.984 0.986 0.988 0.99 0.992 0.994 0.996 0.998 1 1.002
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x (natural interval variable)

dP
pm

(x
)/d

x

Case TE: m = 1, 0 = 10°, 1st mode

Figure 2.6: TE mode function relative to the first eigenvalue, m = 1, ϑ0 = 10◦
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Figure 2.7: TE mode function relative to the second eigenvalue, m = 1, ϑ0 = 10◦
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2.4 Comparison between numerical methods and

final results

This section contains a comparison between many numerical methods described in
the previous section. All these methods were used in order to build a finite eigenvalue
problem starting from a differential equation, so the output of those methods are
an eigenvalue and an eigenvector. The quality of a numerical method applied on an
equation may be evaluated by studying the trend of the error between the eigenvalue
evaluated with the numerical method by using a well-defined set of parameters, and
a reference value.

The main parameters of the two methods are:

• for pseudospectral methods, the number of collocating nodes;

• for spectral methods, the number of expansion functions used.

A problem for the implementation of convergence studies is the evaluation the
reference value used to calculate the error. There are two possible approaches:

• using as a reference value the value evaluated with the same numerical method,
applied with the best set of parameters (maximum number of nodes for pseu-
dospectral methods or maximum number of used functions for spectral meth-
ods) of the convergence study;

• evaluate with a robust numerical algorithm the position of the zero of a Pm
p (x)

function, where p is a value chosen by the user; then, use this value as x0, and
see how precise is the corresponding eigenvalue.

For both pseudospectral and spectral methods, convergence studies were per-
formed using the latter approach; in fact, the former approach is not convenient,
since the “numerical noise” can affect eigenvalues found solving higher order sys-
tems, therefore these results may be less reliable; therefore, in order to perform the
convergence study, it is better to use the latter approach.
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Figure 2.8: Pseudospectral and Legendre spectral methods applied to the associated
Legendre equation
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Figure 2.9: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.10: Gegenbauer equation: convergence curves for TM and TE eigenvalues.

56



2.4. Comparison between numerical methods and final results

4 6 8 10 12 14 16 18 20

15

10

5

0

Order of system

lo
g 10

(e
rro

r)

Case TM: m = 1, 0 = 10°, 1st eigenvalue

 

 
PseudoSpectral
Spectral Gegenbauer
Spectral Chebyshev

4 6 8 10 12 14 16 18 20

15

10

5

0

Order of system

lo
g 10

(e
rro

r)

Case TE: m = 1, 0 = 10°, 1st eigenvalue

 

 
PseudoSpectral
Spectral Gegenbauer
Spectral Chebyshev

Figure 2.11: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.12: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.13: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.14: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.15: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.16: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.17: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.18: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.19: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.20: Gegenbauer equation: convergence curves for TM and TE eigenvalues.

66



2.4. Comparison between numerical methods and final results

4 6 8 10 12 14 16 18 20

15

10

5

0

Order of system

lo
g 10

(e
rro

r)

Case TM: m = 1, 0 = 20°, 2nd eigenvalue

 

 
PseudoSpectral
Spectral Gegenbauer
Spectral Chebyshev

4 6 8 10 12 14 16 18 20

15

10

5

0

Order of system

lo
g 10

(e
rro

r)

Case TE: m = 1, 0 = 20°, 2nd eigenvalue

 

 
PseudoSpectral
Spectral Gegenbauer
Spectral Chebyshev

Figure 2.21: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.22: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.23: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.24: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.25: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.26: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.27: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.28: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.29: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.30: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.31: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.32: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.33: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.34: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.35: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.36: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.37: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.38: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.39: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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Figure 2.40: Gegenbauer equation: convergence curves for TM and TE eigenvalues.
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2.4.1 Final results

From the comparison of the plots it is possible to draw some conclusions.
The first observation is about the direct solution of associated Legendre equation.

This approach has to be avoided, because convergence is very slow; therefore, all
considerations are based on the solution of Gegenbauer equation, found starting
from the associated Legendre equation, taking away its singularity.

Considering the order of the linear system which has to be solved as comparison
parameter, pseudospectral methods are generally worse than spectral methods.

About spectral methods, it is necessary to distinguish TE and TM cases, which
produce different results. About TM cases, the best method is the Gegenbauer one,
which is, on the other hand, the worst one, about TE modes. However, differences
are little, therefore all methods work quite well. Chebyshev methods are slightly
better, compared to Gegenbauer methods, for TE cases, therefore it is possible to say
that, for the evaluation of TM modes, the best method is the Gegenbauer method,
while for the evaluation of TE modes the best method is the Legendre method.

Normalized Gegenbauer have a very similar behavior, compared to Gegenbauer
standard methods; this means that normalization does not play a major role in
convergence.

An interesting observation is about pseudospectral methods and Chebyshev spec-
tral methods; in the convergence study relative to the second eigenvalue, it is possible
to see that curves are very close, except for a few points; this relationship may be ex-
plained remembering that pseudospectral methods actually are Chebyshev methods,
so methods where both collocation nodes and interpolation functions are Chebyshev
polynomials.
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CHAPTER 3

Analysis of rectangular E-plane and
H-plane devices

3.1 Introduction

In this chapter we introduce a numerical method for the analysis of 2-D rectan-
gular devices based on Spectral-Element Methods (SEMs). These devices are two-
dimensional because their geometry is invariant with respect to one cartesian direc-
tion, therefore it is possible to study them in a plane.

SEMs are a hybrid of FEMs and spectral methods; in FEMs, the domain is
partitioned in several sub-domains, then the differential equation is solved in each
of them. In SEMs, there is still a partition step, but the number of sub-domains is
small. Then, each sub-domain is mapped in a canonical domain, so a set of basis
functions is defined in order to expand the electromagnetic field in it; this is why
this method is “spectral”.

In addition to this procedure, it is possible to define the basis functions in order
to take into account the presence of edges, obtaining results with good accuracy even
with few basis functions. Unfortunately, this procedure introduces linear dependance
between basis functions, therefore it is necessary to orthonormalize this set. The
final model should approximate the electromagnetic field in the structure in the
best possible way over a wide range of frequencies. By applying this model to a few
frequency points and then processing the result, it is possible to obtain a reduced-
order model for a bandwidth instead of for a single frequency.

To summarize, this method may be explained by dividing it in the following
steps:

1. formulation of the problem in integral (weak) form;

2. determination of the orthonormal set of basis functions, keeping into account
the edge effect and boundary conditions;

3. determination and solution of the linear system, applying the Galerkin version
of the weighted residual method;
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Figure 3.1: Geometry of a x-invariant structure

3.2 Formulation of the problem

In this section we formulate the study of a generic device invariant with respect to
a cartesian coordinate.

Considering the coordinate reference system defined in Figure 3.1, the structure
is invariant along the x-axis; therefore, the 2-D geometry of the device must be
described on the zy plane.

In practical applications, the mode of interest in the feeding of this structure
is the TE10, which is the dominant mode of a rectangular waveguide. The only
non-vanishing x component for this mode is h′′x; this is interesting because since
this geometry is invariant along the x direction, in each section of the zy plane the
electromagnetic field has the same variation as that of the exciting field.

Depending on the type of incident modes, it is possible to excite just Hx or Ex for
this structure. This suggests that, instead of classifying modes in the structure as
TE or TM like in waveguides, it is better to characterize them as LSE

(x)
mn or LSM

(x)
mn.

LSE
(x)
mn and LSM

(x)
mn are acronyms for Longitudinal Section Electric or Longitudinal

Section Magnetic modes, respectively, with respect to the x direction. Therefore,
LSE

(x)
mn have Ex = 0, while LSM

(x)
mn have Hx = 0. These fields are built as a linear

combination of TEmn and TMmn; in LSE or LSM modes, the transversalization
procedure is still applied with respect to the z direction; this means that these
modes represent linear combinations of TE or TM modes which satisfy respectively
Ex = 0 or Hx = 0. Because of the fact that in these structures is excited just one of
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the x components (electric or magnetic), if Ex = 0 it is necessary to use a LSE
(x)
mn

representation, while if Hx = 0 it is necessary to use the LSM
(x)
mn one.

Depending on the type of modes in the structure, the zy plane will be the E-
plane or the H-plane. In next subsections we prove that, if Ex = 0, E lays only on
the zy plane; therefore, in this case, zy is the E-plane. By contrast, if Hx = 0, the
magnetic field H lays only on the zy plane, which is, in this case, the H-plane.

To summarize,

• for LSE
(x)
mn modes, Ex = 0, so zy is the E-plane of the structure, since the

electric field lays on it;

• for LSM
(x)
mn modes, Hx = 0, so zy is the H-plane of the structure, since the

magnetic field lays on it;

Considering the µ-th waveguide of the whole system, tangential to the µ-th
port of the junction, if the k-th port of the junction is fed with a field containing
only the dominant TE10 component, the index m of the excited LSE

(x)
mn or LSM

(x)
mn

is constant, due to the translational symmetry along the x-axis; this means that,
given the exciting TE10, in the structure are excited LSE

(x)
1n or LSM

(x)
1n modes only.

Because of this reason, it is convenient to transversalize the electromagnetic field
with respect to x direction, obtaining{

H (x, y, z) = H t(x, y, z) + x̂Hx(x, y, z)

E (x, y, z) = E t(x, y, z) + x̂Ex(x, y, z)
(3.1)

Since the electromagnetic field in the structure, thanks to the geometrical in-
variance, has the same variation along the x-axis of the exciting field, it is possible
to re-write (3.1), taking away the dependance on x; therefore, recalling the expres-
sions of rectangular waveguide modes with m = 1 (since we are considering a TE10

exciting mode),

H (x, y, z) = H t(x, y, z) +Hx(x, y, z) =

= H
(x)
t (y, z) cos

(π
a
x
)

+ x̂H(x)
x (y, z) sin

(π
a
x
)

E (x, y, z) = E t(x, y, z) + Ex(x, y, z) =

= E
(x)
t (y, z) sin

(π
a
x
)

+ x̂E(x)
x (y, z) cos

(π
a
x
) (3.2)

where H
(x)
t , E

(x)
t , E

(x)
x , H

(x)
x are field components of the structure without their

dependance on x, which equals the one of waveguide modes.
At this point it is necessary to find the differential equations satisfied by E

(x)
x

and H
(x)
x , considering two separated cases. This means that it is necessary to start

from Maxwell equations, considering two hypotheses.

• All the derivatives evaluated along x direction equal zero. This hypothesis
may be found by solving these equations considering Hx = 0 or Ex = 0, and
exciting the non-vanishing variable with the same dependance of the TE10

exciting mode, which is cos
(
π
a
x
)

or sin
(
π
a
x
)
. By doing these calculations, it is
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3. Analysis of rectangular E-plane and H-plane devices

possible to see that two systems with decoupled variables are generated. The
same result can be found by enforcing ∂

∂x
= 0.

• For E-plane devices, Ex = 0, Hx 6= 0; for H-plane devices, Ex 6= 0, Hx = 0.

3.2.1 E-plane devices

The first step is to write Maxwell equations, which are{
∇× E = −jωµH

∇× H = jωεE
(3.3)

Now, these expression must be written by components, keeping into account
previous hypotheses. For E-plane devices, ∂

∂x
= 0 and Ex = 0. So,

∇× E = det


x̂ ŷ ẑ

0
∂

∂y

∂

∂z
0 Ey Ez

 =

= x̂

(
∂Ez
∂y
− ∂Ey

∂z

)
− ŷ (0) + ẑ (0)

where the second term is proportional toHy, and the third term toHz. Therefore,
it is immediately possible to write

Hy = 0 Hz = 0

So, there is no magnetic field component on the zy plane; therefore, it is the
E-plane of the structure. About the second Maxwell equation,

∇× H = det


x̂ ŷ ẑ

0
∂

∂y

∂

∂z
Hx Hy Hz

 =

= x̂

(
∂Hz

∂y
− ∂Hy

∂z

)
− ŷ

(
−∂Hx

∂z

)
+ ẑ

(
−∂Hx

∂y

)
The first term is proportional to Ex, which equals zero for hypothesis. The three

non-vanishing components which can be written are

∂Ez
∂y
− ∂Ey

∂z
= −jωµHx

∂Hx

∂z
= jωεEy

−∂Hx

∂y
= jωεEz

From here,
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x

y

ν

ϑ

s

γ
(i)
j

Figure 3.2: Reference system for PEC boundary condition


Ey =

1

jωε

∂Hx

∂z

Ez = − 1

jωε

∂Hx

∂y

(3.4)

so, by substituting these expressions in the first equation of the system,

∂

∂y

(
− 1

jωε

∂Hx

∂y

)
− ∂

∂z

(
1

jωε

∂Hx

∂z

)
= −jωµHx

which becomes

∂2Hx

∂y2
+
∂2Hx

∂z2
= −ω2εµHx

And, finally,

∇2
tHx + k2Hx = 0 (3.5)

where ∇t is transversal with respect to the x direction.
This equation must be coupled with PEC boundary conditions and with the

continuity condition with each waveguide.
The PEC boundary condition requires that

E t · ŝ = 0 (3.6)

At this point it is necessary to define correctly each variable of (3.6); considering
for instance Figure 3.2, given ϑ the angle evaluated with respect to the zy system,

ν̂ = ẑ cosϑ+ ŷ sinϑ
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3. Analysis of rectangular E-plane and H-plane devices

Since ŝ is rotated of 90◦ with respect to ν̂, it is possible to write the expression
of ŝ as follows

ŝ = ẑ cos
(
ϑ+

π

2

)
+ ŷ sin

(
ϑ+

π

2

)
=

= −ẑ sinϑ+ ŷ cosϑ

so, considering the transversal field with respect to the x direction, E t, as

E t = Ez ẑ + Eyŷ

it is possible to evaluate the dot product as follows

E t · ŝ = (Ez ẑ + Eyŷ) · ŝ =

=

(
−ẑ

1

jωε

∂Hx

∂y
+ ŷ

1

jωε

∂Hx

∂z

)
· (−ẑ sinϑ+ ŷ cosϑ) =

=
1

jωε

(
sinϑ

∂Hx

∂y
+ cosϑ

∂Hx

∂z

)
=

=
1

jωε

∂Hx

∂ν
(3.7)

in fact,

(∇tHx) · ν̂ =

(
∂Hx

∂z
ẑ +

∂Hx

∂y
ŷ

)
· (ẑ cosϑ+ ŷ sinϑ) =

=
∂Hx

∂y
sinϑ+

∂Hx

∂z
cosϑ

Finally, it is necessary to find the continuity condition at each port, which must
be enforced for each component of the electromagnetic field which lays on the discon-
tinuity section. In this case, the discontinuity is on the plane normal to ẑ, therefore
the components of interest are Ex, Hx, Ey, Hy. Of these components, the non-
vanishing ones are Hx and Ey. Furthermore, it is possible to see, from the first
equation of (3.4), that

Ey =
1

jωε

∂Hx

∂z

so, the two conditions which must be enforced in order to guarantee the conti-
nuity of the electromagnetic field at each port are

Hx = Hx,wg(k)

∂Hx

∂z
=
∂Hx,wg(k)

∂z

(3.8)
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3.2.2 H-plane devices

Now are performed the same calculations of E-plane devices, considering the pres-
ence of LSM

(x)
mn modes. So, in this case, the zy plane is the H-plane of the structure.

Considering all the derivatives evaluated with respect to x equal to zero, and Hx = 0,
it is possible to write Maxwell equations by components as follows:

∇× E = det


x̂ ŷ ẑ

0
∂

∂y

∂

∂z
Ex Ey Ez

 =

= x̂

(
∂Ez
∂y
− ∂Ey

∂z

)
− ŷ

(
−∂Ex
∂z

)
+ ẑ

(
−∂Ex
∂y

)
where the first term equals zero, since it is proportional to Hx which equals zero

for hypothesis. About the second Maxwell equation,

∇× H = det


x̂ ŷ ẑ

0
∂

∂y

∂

∂z
0 Hy Hz

 =

= x̂

(
∂Hz

∂y
− ∂Hy

∂z

)
− ŷ (0) + ẑ (0)

where the second term is proportional to Ey, and the third term to Ez. Therefore,
it is immediately possible to write

Ey = 0 Ez = 0

So, there is no electric field component on the zy plane, which is the H-plane of
the structure. The three non-vanishing components for these equations are:

∂Hz

∂y
− ∂Hy

∂z
= jωεEx

∂Ex
∂z

= −jωµHy

−∂Ex
∂y

= −jωµHz

so 
Hy = − 1

jωµ

∂Ex
∂z

Hz =
1

jωµ

∂Ex
∂y

(3.9)

so, by substituting these expressions in the first equation of the system,
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3. Analysis of rectangular E-plane and H-plane devices

∂

∂y

(
1

jωµ

∂Ex
∂y

)
− ∂

∂z

(
− 1

jωµ

∂Ex
∂z

)
= jωεEx

which becomes

∂2Ex
∂y2

+
∂2Ex
∂z2

= −ω2εµEx

And, finally,

∇2
tEx + k2Ex = 0 (3.10)

About the PEC boundary condition, in this case it is just

Ex = 0

In fact, Ez = Ey = 0, therefore it is necessary to enforce only Ex to equal zero,
on the PEC surface.

Finally, it is necessary to work on continuity conditions at each port. In this case,
the only two non-vanishing components are Hy and Ex. First of all, it is necessary
to enforce the continuity of Ex at each port. In addition, from the first equation of
(3.9), it is possible to find

Hy = − 1

jωµ

∂Ex
∂z

therefore, it is necessary to enforce the continuity of the derivative of Ex with
respect to z, which is the axis normal to the discontinuity plane.

Resume of previous results

In the rectangular case, it is necessary to study two decoupled problems. Exception
made for PEC boundary conditions, results of previous cases are very similar. In
fact,

• for LSE
(x)
mn modes, if Hx is renamed φ,

• for LSM
(x)
mn modes, if Ex is renamed φ,

the differential equation satisfied by φ is, for both cases, the Helmholtz equation,
with ∇t transversal to the invariance direction x;

∇2
tφ+ k2φ = 0 (3.11)

Continuity boundary conditions are the same for both cases; as a matter of fact,
for both cases it is necessary to enforce either φ or its derivative to be continue on
each access line. So 

φ = φwg

∂φ

∂nwg(k)

=
∂φwg

∂nwg(k)

(3.12)
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3.2. Formulation of the problem

since the discontinuity plane in both cases is normal to the access line plane,
nwg(k) . By contrast, it is necessary to distinguish LSE

(x)
mn and LSM

(x)
mn cases during

the formulation of PEC boundary conditions; in fact,

• for LSE
(x)
mn, it is necessary to enforce the value of the normal derivative of φ;

∂φ

∂ν

∣∣∣∣
γPEC

= 0 (3.13)

• for LSM
(x)
mn cases, the same procedure must be applied on the value of φ;

φ|γPEC
= 0 (3.14)

3.2.3 Modal expansion of waveguide electromagnetic field
components

In order to enforce continuity conditions for each access port, it is necessary to
represent opportunely the electromagnetic field on it. In this work, basis functions
used for the expansion of the electromagnetic field are the LSE and LSM modes.
The whole procedure for the determination of following expressions is carried out in
Subsection 4.2.3; here, the result is

E(k)
x,wg =

∞∑
µ=0

√
Z

(k)
∞,µ

[
a(k)
µ e−jβ

(k)
µ z(k) + b(k)

µ e+jβ
(k)
µ z(k)

]
e(k)
x,µ(ρ) (3.15)

H(k)
x,wg =

∞∑
µ=0

√
Y

(k)
∞,µ

[
a(k)
µ e−jβ

(k)
µ z(k) − b(k)

µ e+jβ
(k)
µ z(k)

]
h(k)
x,µ(ρ) (3.16)

Where Y
(k)
∞,µ and Z

(k)
∞,µ are respectively the modal admittance and the modal

impedance relative to mode µ at port k, and β
(k)
µ is the modal wavenumber (prop-

agation constant) relative to mode µ. z(k) is the propagation coordinate relative to

the origin of each local coordinate system at each k-th port. Finally, a
(k)
µ and b

(k)
µ

are the incident and scattered waves, for each k-th port.
In order to satisfy boundary conditions, it is necessary to evaluate also the deriva-

tives of these expressions; therefore, since the normal to the discontinuity plane is
z,

∂E
(k)
x,wg

∂z
=
∞∑
µ=0

√
Z

(k)
∞,µ jβ(k)

µ

[
−a(k)

µ e−jβ
(k)
µ z(k) + b(k)

µ e+jβ
(k)
µ z(k)

]
e(k)
x,µ(ρ)

∂H
(k)
x,wg

∂z
=
∞∑
µ=0

√
Y

(k)
∞,µ jβ(k)

µ

[
−a(k)

µ e−jβ
(k)
µ z(k) − b(k)

µ e+jβ
(k)
µ z(k)

]
h(k)
x,µ(ρ)

In conclusion, all these expressions are usually evaluated for z(k) = zwg(k) , so at
each port. Since all local reference systems have their origin at their respective device
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3. Analysis of rectangular E-plane and H-plane devices

port, all the exponentials equal 1, because z(k) = 0 ∀k. So, previous expressions are
simplified, as follows

∂E
(k)
x,wg

∂z
=
∞∑
µ=0

√
Z

(k)
∞,µ jβ(k)

µ

[
−a(k)

µ + b(k)
µ

]
e(k)
x,µ(ρ) (3.17)

∂H
(k)
x,wg

∂z
=
∞∑
µ=0

√
Y

(k)
∞,µ jβ(k)

µ

[
−a(k)

µ − b(k)
µ

]
h(k)
x,µ(ρ) (3.18)

3.2.4 Weak-form formulation of the problem

If the domain where the differential equation solution is defined may not be repre-
sented as the cartesian product of 1-dimensional domains, it is not possible to use
the variable separation method for the determination of the solution of the problem.
In this case, the approach used is based on casting the differential problem (3.11)
and its boundary conditions (3.12), (3.13) or (3.14) in weak form. Given a space of
test functions Xv, the projection of (3.11) on these functions is∫∫

Σ

∇2
tφ vβ dΣ − k2

∫∫
Σ

φ vβ dΣ = 0 ∀vβ ∈ Xv (3.19)

It is important to remark that the numerical scheme which will be applied is
Galerkin-based, because φ, which is the unknown of the problem, will be expanded
as a sum of functions which equal vβ. This means that vβ has the same properties
of φ, because they have to satisfy PEC boundary conditions just like φ.

Expression (3.19) can be modified by applying the first Green scalar theorem,
recalled here; ∫∫∫

V

(
∇φ · ∇ψ + ψ∇2φ

)
dV =

∫∫
Σ

ψ
∂φ

∂n
ds

this can be applied (in the 2-D case) to discharge one∇t operator to test functions
vβ, obtaining ∫∫

Σ

∇2
tφ vβ dΣ = −

∫∫
Σ

(∇tφ) · (∇tvβ) dΣ +

∫
γ

vβ
∂φ

∂n
ds

By substituting this last expression in the weak form Helmholtz equation it is
possible to obtain∫∫

Σ

(∇tφ) · (∇tvβ) dΣ − k2

∫∫
Σ

φ vβ dΣ =

∫
γ

vβ
∂φ

∂n
ds

The right-hand side term has a line integral, which can be divided in two kinds
of contributions: integrals on PEC surfaces and integrals on access lines. First of
all, it is possible to write the line integral as follows∫

γ

vβ
∂φ

∂n
ds =

∫ tb

ta

(
vβ(x(t), y(t))

∂φ

∂n

∣∣∣∣
(x(t),y(t))

)
· s ′(t)dt
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3.3. Application of the Spectral-Element Method

The PEC integral contributions equal zero, because one of v or the derivative of
φ satisfy PEC boundary conditions (which involve the dot product of the electric
field and the unit vector tangent to the PEC surface), so the only non-vanishing
contributions are the ones from the ports. Therefore,∫

γ

vβ
∂φ

∂n
ds =

Nports∑
k=1

∫
γ
(k)
wg

∂φ

∂n
vβ ds

Now, recalling the second equation from (3.12), it is possible to substitute it in
the integral, obtaining

∫∫
Σ

(∇tφ) · (∇tvβ) dΣ − k2

∫∫
Σ

φ vβ dΣ =

Nports∑
k=1

∫
γ
(k)
wg

∂φ
(k)
wg

∂n
vβ ds (3.20)

This equation satisfies implicitly the second condition of (3.12), in strong form;
as a matter of fact, this condition is enforced by performing a substitution in the
equation, instead of by projection.

In order to complete the weak-form formulation it is still necessary to project
on a chosen basis the first equation of (3.12). This time, in order to simplify some

integrals, it is possible to use, as expansion functions, mode functions h
(k)
x,β for E-

plane devices, or ex,µ for H-plane devices. Since the method is Galerkin, hx or ex act
either as test functions or as expansion functions for the waveguide fields. Therefore,
in weak form, it is possible to write, for each access line, considering E-plane devices,〈

φ, h(k)
x,ν

〉∣∣
γ(k)

=
〈
φwg, h

(k)
x,ν

〉∣∣
γ(k)

(3.21)

or, in integral form, ∫
γ(k)

φh(k)
x,νds =

∫
γ(k)

φwg h
(k)
x,νds (3.22)

While, for H-plane devices,〈
φ, e(k)

x,ν

〉∣∣
γ(k)

=
〈
φwg, e

(k)
x,ν

〉∣∣
γ(k)

(3.23)

or, in integral form, ∫
γ(k)

φ e(k)
x,νds =

∫
γ(k)

φwg e
(k)
x,νds (3.24)

3.3 Application of the Spectral-Element Method

Up to this point, no hypotheses about domain properties were introduced, so every
equation introduced is valid for arbitrary geometries.

The numerical scheme which must be applied to this problem is a Spectral-
Element Method. This name describes its philosophy; in fact, it mixes Finite-
Element Methods and Spectral methods to solve a PDE (Partial Differential Equa-
tion).
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3. Analysis of rectangular E-plane and H-plane devices

The Finite-Element Methods concept is based on the idea of partitioning a do-
main in a big number of points or sub-domains; then, the solution of the PDE can
be approximated by integrating numerically, using standard techniques such as Eu-
ler’s method or Runge-Kutta methods. Then, the PDE is transformed in a linear
system. Spectral methods, like the Galerkin method, are based on the expansion of
the solution of the differential problem on a set of known expansion functions. By
obtaining a linear system, for instance by testing the expanded differential equation
on a set of test functions, it is possible to find a solution of the problem.

Spectral-Element Methods are a hybrid of these two methods; there is a partition
of the domain in few subdomains, then for each of them a set of basis functions is cho-
sen, defining N -dimensional domains as tensor products; each differential equation
can be solved using numerical integration techniques, such as Gaussian integration
formulae. Finally, solutions belonging to each “patch” (subdomain) is joined, by
enforcing continuity boundary conditions between each patch.

Given M the number of subdomains, the problem (3.20) is divide in M sub-
problems like

∫∫
Σ

∇tφ
(j) · ∇tv

(j)
β dΣ − k2

∫∫
Σ

φ(j) v
(j)
β dΣ =

Nports∑
k=1

∫
γ
(k)
wg

∂φ
(j)

wg(i)

∂n
v

(j)
β ds (3.25)

where j denotes each patch.
Between each couple of patches it is necessary to enforce continuity boundary

conditions; since this is similar to the problem of enforcing continuity to between
waveguides and device ports, it is possible to define the following continuity condi-
tions 

φ(a) = φ(b)

∂φ(a)

∂n(a)
=
∂φ

(b)
wg

∂n(b)

(3.26)

and these conditions must be enforced on common boundaries ∂Σ (a,b), where
j = a and j = b are the indexes of two patches. The boundary between a and b is
defined as

∂Σ (a,b) = ∂Σ (a) ∩ Σ (b), a 6= b

It is important to remark that supports of sub-domains are disjoined; this means
that they have no intersection, exception made for the boundary.

3.3.1 Definition of non-specialized basis functions

The unknown of each problem, related with each j-th patch, is φ(j); therefore, it will
be expanded in a linear combination of functions. Basis functions which will be used
for both expansion and test tasks are “specialized” functions, because they generate
a very particular range of functions. As a matter of fact, out of the need to choose
functions which show special features, such as assuming particular values in some
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points, boundary conditions must be enforced, since they “select”, of all possible
functions able to generate a range of behaviors, only the ones which present these
special features. However, the procedure for the determination of these specialized
functions starts from “raw” functions, which does not comply with any particular
specification; in a second moment, these functions will be specialized finding, starting
from them, a set of functions which satisfy Dirichlet, Neumann or Robin boundary
conditions, which are continue in particular points, orthonormal, and so on. So, the
first step is the definition of non-specialized basis functions, in order to find a set
of functions defined on a canonical domain, which does not satisfy any boundary
condition.

Raw functions must be defined on a canonical domain, also known as “parent
domain” σ = (ξ, η), because the geometry of the problem described in the natural
domain may be complex, so it would be hard to describe functions directly on it. In
order to propose a general case, the E- or H-plane of the structure is described on
an xy plane, just to ease the reader; this means that, in this case,

z −→ x y −→ y

Then, it is necessary to find a correspondence between the natural domain xy
and the parent domain ξη, which is

ρ = Fρσ(σ)

It is possible to prove that Fρσ, which maps a generic point of the parent domain
σ to a point in the natural ρ domain, assumes a form like

F (j)
ρσ (σ) =

1− η
2

π
(j)
1 (ξ) +

1 + η

2
π

(j)
3 (ξ)+

+
1− ξ

2

[
π

(j)
4 (η)− 1 + η

2
π

(j)
4 (1)− 1− η

2
π

(j)
4 (−1)

]
+

+
1 + ξ

2

[
π

(j)
2 (η)− 1 + η

2
π

(j)
2 (1)− 1− η

2
π

(j)
2 (−1)

]
(3.27)

Where (ξ, η) are the abscissa and the ordinate of the parent domain coordinate

system, π
(j)
n are the parametric transformations for mapping each n-th side of the

arbitrary quadrilateral to each n-th side of the parent domain, which is the square
defined by the cartesian product

[−1,+1]× [−1,+1]

and j indexes each j-th patch where this procedure is applied. Usually, even the
hardest geometries of practical interest may be described analytically, as parametric
curves, therefore it is possible to find an analytical mapping function Fρσ(σ) able to
map a function, starting from the parent domain σ, to the ρ natural domain. The
convention chosen is to use as n = 1 side the lower one, while the others are sorted
following the counterclockwise order.
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3. Analysis of rectangular E-plane and H-plane devices

So, the procedure used to build basis functions starts from their definition in the
parent domain, as tensor product1 of known functions, like Chebyshev polynomials.
So, an example of basis for the parent domain is

Pmn(σ) = Pmn(ξ, η) = Tm(ξ)Tn(η)

These functions must be mapped in the parent domain ρ; so, given
{
P

(j)
mn(σ)

}
the set of functions for the parent design, it is possible to define non-specialized
functions by this way:

s
(j)
δ (ρ) = P (j)

mn(σ), ρ = F (j)
ρσ (σ), ρ ∈ Σi

where δ is a multiple index, since it retains informations about m and n; in
other words, δ = (m,n). This means that, given P

(j)
mn(σ) in the parent domain, its

mapped version is basically made by evaluating each ρ from the transformation,
obtaining a relationship between each point of ρ and each point of σ; so, by relating

these correspondence with P
(j)
mn(σ), it is possible to obtain non-specialized functions

s
(j)
mn(ρ).

3.3.2 Meixner conditions

The electromagnetic field nearby the edges is singular, therefore a standard SEM can
not describe it maintaining its exponential convergence. Commercial codes, such as
Ansoft HFSS, in order to describe properly these elements refine the mesh nearby
each edge, obtaining a better accuracy but increasing computational time.

An alternative idea should be the synthesis of basis functions which take into
account the presence of edges intrinsically, in order to use them in a Spectral-Element
Method. The synthesis procedure can be carried out using the asymptotic behavior
formulae of the electromagnetic field near to the edges as weights for non-specialized
basis functions; considering smn(ρ) = sδ(ρ) the set of basis functions in the natural

domain, the idea is, given weight functions ψ
(p)
e , to build a set of functions like

{Fδ(σ)}
⋃{

Fδ(σ)ψ(p1)
e

}⋃
...
⋃{

Fδ(σ)ψ(pn)
e

}
This means joining the same set of non-specialized basis functions sδ(σ) with

many different ψ
(pi)
e weight functions, where the order of each weight function de-

pends on pi.
Weight functions ψ

(p)
e are defined in a third domain, called “companion domain”

χ, which is related to the natural domain ρ. In fact, the companion domain definition
is based on the concept of “companion structure”, which is obtained transforming
each curved side in a straight side, tangent at the edge. This structure allows the
user to define easily the angle of the edge δe.

The singular behavior of the electromagnetic field (φ) can be modeled as follows

• for the LSE
(x)
mn case, so for E-plane structures,

1which is the product of functions of different variables
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δe

b

ρe

ϑe

Figure 3.3: Detail of the geometry of an edge

ψ(p)
e (χ) = ρ

pπ
δe
e cos

(
pπ

δe
ϑe

)
• for the LSM

(x)
mn case, so for H-plane structures,

ψ(p)
e (χ) = ρ

pπ
δe
e sin

(
pπ

δe
ϑe

)
Where δe is the angle of the metallic edge. (ρe, ϑe) are coordinates for the local

coordinate system on the edge e. Since the companion domain is basically identical
to the natural one, less than the approximation of curved lines with straight lines,
ρe and ϑe may be used for the representation of the behavior of the electromagnetic
field also in the natural domain.

Considering the multidimensional index α = (m,n, p), wherem and n are indexes
for non-specialized basis functions, while p is related to the weight function, basis
functions which take into account only the Meixner condition may be found as

f (j)
α (ρ) =

N(j)
e∏
e=1

ψ(p)
e

(
F (j)
χσ (σ)

)P (j)
mn(σ), ρ = F (j)

ρσ (σ) ∈ Σi (3.28)

Considering an example, given P
(j)
mn(σ), if p = {0, 1, 2}, the result of this opera-

tion is this set of basis functions

{
P (j)
mnψ

(0)
e

}⋃{
P (j)
mnψ

(1)
e

}⋃{
P (j)
mnψ

(2)
e

}
=

=
{
P (j)
mn

}⋃{
P (j)
mnψ

(1)
e

}⋃{
P (j)
mnψ

(2)
e

}
Near to the edges, each set of functions will act in a different way, because of the

fact that weights have significative values in these situations. On the other hand,
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3. Analysis of rectangular E-plane and H-plane devices

far away from the edges, the contribution of weights decays, therefore the final set of
basis functions has many replicas of the same set of basis functions, joined together.
This means that this is not actually a basis, since it does not comply with the
“independence” property. This property has to be re-established, in a second time.

3.3.3 Specialization of basis functions

The f
(j)
α functions satisfy only Meixner conditions. In order to use them for the

representation of φ(j), they must satisfy every boundary condition satisfied by it, so
PEC boundary conditions and continuity conditions between each patch.

Starting from PEC conditions, it is possible to use a basis-recombination ap-

proach for the determination of a set of functions
{
g

(j)
l

}
, defined as linear combi-

nations of functions belonging to
{
f

(j)
α

}
, which satisfy PEC boundary conditions.

The idea of basis recombination is to recombine the functions f
(j)
α in order linear

combinations of them which satisfy homogeneous boundary conditions and, hence,
to obtain a more specialized set of functions, compared to f

(j)
α . The formulation of

the basis recombination strategy is based on the solution of the following equation

g
(j)
l (ρ) =

∑
α

y(l)
α f

(j)
α (ρ) (3.29)

where l is the index for the identification of each single new function g
(j)
l , relative to

each j-th patch. For each l-th function of the more specialized basis
{
g

(j)
l (ρ)

}
there

is a set of coefficients y
(l)
α which represent the change of basis from f (j) to g(j), by

building an appropriated linear combination of f (j) functions. So, in order to build
each l-th function g

(j)
l , it is necessary to solve an homogeneous system of type

L(j) y (l) = 0 (3.30)

in fact, for both E-plane and H-plane devices, boundary conditions are homo-
geneous. The difference between the two cases is in L. In fact,

• in E-plane devices, it is necessary to enforce, as PEC boundary condition,

∂φ(j)

∂n(j)
= 0

which implies

∂g
(j)
l

∂n(j)
= 0

therefore, substituting it in (3.29), remembering that y
(l)
α are just recombina-

tion coefficients, so constants,
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3.3. Application of the Spectral-Element Method

∂g
(j)
l

∂n(j)
= 0 =⇒ ∂

∂n(j)

∑
α

y(l)
α f

(j)
α (ρ) =

=
∑
α

y(l)
α

∂f
(j)
α

∂n(j)
(3.31)

• in H-plane devices, it is necessary to enforce

φ(j) = 0

which implies

g
(j)
l = 0

therefore, substituting it in (3.29),

g
(j)
l = 0 =⇒

∑
α

y(l)
α f

(j)
α (ρ) = 0 (3.32)

These expressions must be satisfied only on PEC surface. In order to write coeffi-
cients for (3.30), the following step is the projection, on a set of test functions vβ,
of expressions (3.31) or (3.32), depending on the type of structure. Results are

• for E-plane structures,

L(j)
qα

〈
∂f

(j)
α

∂n(j)
, vq

〉
γ
(j)
PEC

=

∫
γ
(j)
PEC

∂f
(j)
α

∂n(j)
vq ds (3.33)

• for H-plane structures,

L(j)
qα

〈
f (j)
α , vq

〉
γ
(j)
PEC

=

∫
γ
(j)
PEC

f (j)
α vq ds (3.34)

Now, every coefficient of system (3.30) is found. Recalling its expression,

L(j) y (l) = 0

The unknown of this system is y (l); since this system is homogeneous, its solution

is the set of vectors belonging to the kernel space of L(j) matrix. Therefore, in
order to carry out the basis recombination strategy and determine recombination
coefficients y

(l)
α , it is necessary to determine a basis for the representation of the

kernel space of L(j).

In order to compute a basis for the kernel of L(j), it is possible to use the economic
size singular value decomposition on it;
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3. Analysis of rectangular E-plane and H-plane devices

L(j) = U S V H

The columns of V which are related to a null singular value are a basis for the

kernel space of L(j); therefore, by establishing a threshold, considering all singular
values below this threshold and columns of V corresponding to them, it is possible

to find y
(l)
α values, which will be called G

(j)
lα . G

(j)
lα represents a projection coefficient

from the basis f
(j)
α to the g

(j)
l one. This means that there is a linear application,

represented with the matrix G of chosen columns of V , which transforms f
(j)
α in

g
(j)
l .

g
(j)
l functions are just a recombination of f

(j)
α functions, which were non-specialized

functions, keeping into account only the presence of Meixner conditions; these func-
tions, because of the method used for their constructions, are linearly dependent.

In order to solve the final system for the determination of scattering matrix, it
is necessary to build the mass matrix2, (f )M (j), as follows

(f )M
(j)
βα =

〈
f (j)
α , f

(j)
β

〉
=

∫∫
Σj

f (j)
α f

(j)
β dΣj

This matrix can be represented in the
{

g (j)
}

basis by considering the change of
basis

(g)M (j) = GH,(j ) (f )M (j) G (j)

Because of the fact that g
(j)
l functions are not linearly independent, (g)M (j) mass

matrix is ill-conditioned, therefore it is not possible to use it in a linear system,
because its solution would be unreliable. So, it is necessary to remove these de-

pendences by building an orthonormal basis
{
h

(j)
r

}
, which can represent the same

image of the mass matrix (g)M (j), enforcing orthonormality. It is possible to apply
again the SVD decomposition, this time focusing on matrix U ; considering

(g)M (j) = U S V H

It is necessary to define a basis for the range of (g)M (j); this can be done by
considering all singular vectors belonging to U corresponding to non-vanishing sin-
gular values. So, it is defined a threshold, and then are chosen all singular vectors
corresponding to singular values above it. Retaining all these singular values in H (j),

it is possible to build functions
{
h

(j)
r

}
, which satisfy PEC and Meixner boundary

conditions, and which are orthonormal.

3.3.4 Patching

In order to “glue” all patches, it is necessary to perform a final change of basis to a
set of global basis functions,

{
us(ρ)

}
.

2mass matrix is a FEM term, which represents a generalization of the idea of “mass” to gener-
alized coordinate systems
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3.4. Application of the Galerkin method

The first step for joining all basis functions is to enforce (3.26) conditions, which
guarantee the continuity of the electromagnetic field between confining sub-domains;
like previously done, this is done in weak form.

First of all, it is necessary to define this final change of basis. Since all sub-
domains are disjoined (because their intersection is the empty set), it is possible to
evaluate each s-th function us(ρ) as follows

us(ρ) =
⋃
j

{∑
r

c(s,j)
r h(j)

r (ρ)

}

It is necessary to enforce continuity between expressions inside the parentheses;
therefore, in weak form, it is necessary to test both the conditions on a set of 1-
dimensional functions, obtaining, for each confining couple of edges (a, b),

∑
r

c(s,a)
r

〈
h(a)
r , vq

〉∣∣
∂(a,b)

=
∑
r

c(s,b)
r

〈
h(b)
r , vq

〉∣∣
∂(a,b)

(3.35)

∑
r

c(s,a)
r

〈
∂h

(a)
r

∂n(a)
, vq

〉∣∣∣∣∣
∂(a,b)

=
∑
r

c(s,b)
r

〈
∂h

(b)
r

∂n(b)
, vq

〉∣∣∣∣∣
∂(a,b)

(3.36)

By building a matrix N starting from these conditions, it is possible to find another
homogeneous system, of type

N c(s) = 0

This system can be solved once again by evaluating the SVD decomposition of N
and using the singular vectors V corresponding to vanishing singular values. This

corresponds to find a basis for the kernel space of N , therefore the vector c(s) of

coefficients for performing the change of basis.
{
us(ρ)

}
is the set of functions which

is actually used for the expansion of φ, since it is global (it represents a basis for
the whole domain, not just for a subdomain), orthonormal, and satisfies PEC and
Meixner boundary conditions.

3.4 Application of the Galerkin method

Considering
{
us(ρ)

}
as known functions from previous steps, it is possible to apply

them to equation (3.20) and to the boundary condition (3.22) or (3.24), recalled
here

107



3. Analysis of rectangular E-plane and H-plane devices

∫∫
Σ

(∇tφ) · (∇tvβ) dΣ − k2

∫∫
Σ

φ vβ dΣ =

Nports∑
k=1

∫
γ
(k)
wg

∂φ
(k)
wg

∂n
vβ ds∫

γ(k)
φ e(k)

x,νds =

∫
γ(k)

φwg e
(k)
x,νds H -plane∫

γ(k)
φh(k)

x,νds =

∫
γ(k)

φwg h
(k)
x,νds E -plane

First of all, it is necessary to recall some basic informations; φ function can be
expanded using us(ρ) basis function, which take into account (at this step) the fact
that the device is E-plane or H-plane. Therefore,

φ =

Nfun∑
s=0

xsus(ρ) (3.37)

It is important to recall (3.15) and (3.16) too, so

E(k)
x,wg =

∞∑
µ=0

√
Z

(k)
∞,µ
[
a(k)
µ + b(k)

µ

]
e(k)
x,µ(ρ)

H(k)
x,wg =

∞∑
µ=0

√
Y

(k)
∞,µ
[
a(k)
µ − b(k)

µ

]
h(k)
x,µ(ρ)

3.4.1 Continuity conditions equations

The first equation which can be modified is, considering for instance E-plane devices,∫
γ(k)

φh(k)
x,ν ds =

∫
γ(k)

φwg h
(k)
x,ν ds ∀β

This expression must be modified, by substituting field expansions for both φ
and φwg, from (3.37) and (3.15) respectively, obtaining

Nfun∑
s=1

xs

∫
γ(k)

us(ρ)h(k)
x,ν(ρ) ds =

Nmodes∑
k=1

[
a(k)
µ − b(k)

µ

]√
Y

(k)
∞,µ

∫
γ(k)

h
(k)
x,k(ρ)h(k)

x,ν(ρ) ds

This equation must be satisfied ∀ν, where ν ∈ [0, Nmodes]. It is part of the final
system; as a matter of fact, it permits to define two Galerkin coefficients, which
must be evaluated by numerical integration. In fact, this equation may be written
as follows

C (k) = D (k)

√
Y

(k)
∞,µ

(
a(k) − b(k)

)
(3.38)
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3.4. Application of the Galerkin method

where each element of C matrix can be written as

C(k)
νs =

∫
γ(k)

us(ρ)h(k)
x,ν(ρ) ds

=

∫ b(k)

0

us(y, zwg(k))h(k)
x,ν(y) dy (3.39)

where z = zwg(k) represents the z-section of the k-th port of the device, in the
global reference system.

A similar procedure can be carried out about the D matrix; in fact,

D
(k)
νk =

∫
γ(k)

h
(k)
x,k h

(k)
x,ν ds (3.40)

=

∫ b(k)

0

h
(k)
x,k(y)h(k)

x,ν(y) dy (3.41)

These equations must be enforced in the system ∀k = 1 to Nports.

3.4.2 Helmholtz equation

The second equation which must be represented as a linear system is the Helmholtz
equation, written in weak form and modifying by applying the Green’s theorem. So,
it is necessary to start from

∫∫
Σ

(∇tφ) · (∇tvβ) dΣ − k2

∫∫
Σ

φ vβ dΣ =

Nports∑
k=1

∫
γ
(k)
wg

∂φ
(k)
wg

∂n
vβ ds

It is possible to identify three contributions:

• the stiffness matrix integral;

• the mass matrix integral;

• line integrals.

About the stiffness matrix, it is possible to expand the integral∫∫
Σ

(∇tφ) · (∇tvβ) dΣ =

Nfun∑
s=1

xs

∫∫
Σ

(∇tus(y, z)) · (∇tvβ(y, z))dΣ

but, since this is a Galerkin method,

us(y, z) = vβ(y, z)

expansion and test functions are equal; therefore, the elements of the stiffness
matrix in the global basis {us} can be written as
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3. Analysis of rectangular E-plane and H-plane devices

(u)Kβs =

∫∫
Σ

(∇tus(y, z)) · (∇tuβ(y, z))dΣ

about the generic mass matrix element, it is possible to obtain, with the same
procedure,

(u)Mβs =

∫∫
Σ

us(y, z)uβ(y, z)dΣ

Finally, it is necessary to write the line integral contribution as an integral on
an interval. So,

∫
γ
(k)
wg

∂φ
(k)
wg

∂n
vβ ds = −

∫
γ
(k)
wg

∂φ
(k)
wg

∂z
vβ ds

From (3.17) and (3.18)

∂E
(k)
x,wg

∂z
=
∞∑
µ=0

√
Z

(k)
∞,µ jβ(k)

µ

[
−a(k)

µ + b(k)
µ

]
e(k)
x,µ(ρ)

∂H
(k)
x,wg

∂z
=
∞∑
µ=0

√
Y

(k)
∞,µ jβ(k)

µ

[
−a(k)

µ − b(k)
µ

]
h(k)
x,µ(ρ)

so, by substituting in the line integral,

∫
γ
(k)
wg

∂φ
(k)
wg

∂n
vβ ds = +

Nmodes∑
k=1

jβ(k)
µ

√
Y

(k)
∞,µ
[
a(k)
µ + b(k)

µ

] ∫ b(k)

0

hx,µuβ(y, zwg(k))dy

finally, it is possible to obtain

B (k) =

∫ b(k)

0

hx,µuβ(y, zwg(k))dy

This equation must be satisfied for each k-th port.

To sum up, the system which must be solved in order to find the x vector of
Galerkin method coefficients is

(
(u)K − k2 (u)M

)
x =

Nports∑
k=1

B (k)
(

a(k) − wb(k)
)

C (k) x = D (k)
(

a(k) + wb(k)
)

∀k = 1, 2, ...Nports (3.42)
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3.4. Application of the Galerkin method

3.4.3 Determination of the scattering matrix by means of a
reduced-order model

The final step for the formulation of the model of a E-plane or H-plane device is the
determination of the scattering matrix of the device that defines the relationship
between the scattered waves b and incident waves a. Once the behavior of each
device is known, the whole electromagnetic system can be modeled through the
cascade of the corresponding scattering matrices.

The model must be valid in a wide range of frequencies; the way to obtain this
is the evaluation of the solution of the system (3.42) in a small set of frequency
points, collect the solutions and then apply an SVD decomposition in order to find
a model with reduced order which can be used in a range of frequencies, instead of
at a single frequency point. Considering for hypothesis that the following system
is already processed, it is possible to modify these expressions in order to find the
scattering matrix from known matrices.

(
(u)K̃ − k2I

)
x =

Nports∑
k=1

B̃
(k)
(

a(k) − wb(k)
)

C̃
(k)

x = D̃
(k)
(

a(k) + wb(k)
)

∀k = 1, 2, ...Nports (3.43)

this system is slightly different from (3.42); as a matter of fact, the mass matrix is
replaced with I , which is the identity matrix (of appropriate dimension). In fact,
after the application of the SVD process, the basis functions are orthonormal.

From the second equation of (3.43), it is possible to find b(k); so

b(k) = w(D̃
(k)

)−1
[
C̃

(k)
x − D̃

(k)
a(k)
]

=

= w(D̃
(k)

)−1C̃
(k)

x − wI a(k) (3.44)

Now, the expression of b(k) can be substituted in the first equation of (3.43), in
order to find the unknown x . So

(
(u)K̃ − k2I

)
x =

Nports∑
k=1

B̃
(k)

a(k) −
Nports∑
k=1

B̃
(k)

D̃
(k)

C̃
(k)

x +

Nports∑
k=1

B̃
(k)

a(k)

because w2 = 1, for both w = ±1 cases. So, by bringing each term which
multiplies x at first term, it is possible to find(

(u)K̃ − k2I +

Nports∑
k=1

B̃
(k)

D̃
(k)

C̃
(k)

)
x = 2

Nports∑
k=1

B̃
(k)

a(k)

and by defining Ã the matrix
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3. Analysis of rectangular E-plane and H-plane devices

Ã , (u)K̃ − k2I +

Nports∑
k=1

B̃
(k)

D̃
(k)

C̃
(k)

it is possible to find x as

x = 2

Nports∑
k=1

Ã
−1

B̃
(k)

a(k)

In order to evaluate x it is necessary to sum each contribution at each port. On
the other hand, (3.44) is valid for a particular l-th port. Therefore, it is possible to
write (3.44) as relative to the l-th port

b(l) = w(D̃
(l)

)−1C̃
(l)

x − wI a(l)

where, by substituting x , it is possible to find

b(l) = w(D̃
(l)

)−1C̃
(l)

Nports∑
k=1

2Ã
−1

B̃
(k)

a(k) − wI a(l)

This expression has two kind of contributions: the one from the l-th port and
the one from the other ports. So, this expression can be re-written emphasizing this
fact

b(l) =
[
−wI + 2w(D̃

(l)
)−1C̃

(l)
Ã
−1

B̃
(l)
]

a(l)+

+

Nports∑
k=1
k 6=l

2w(D̃
(k)

)−1C̃
(k)

Ã
−1

B̃
(k)

a(k)

From this expression, the determination of the scattering matrix between the
l-th port and the i-th port is straightforward. In fact, the relationship between the
l-th scattered wave and the l-th incident wave is

S (l,i) =

w
[
2(D̃

(i)
)−1C̃

(i)
Ã
−1

B̃
(i) − I

]
, if i = l

2w(D̃
(i)

)−1C̃
(i)

Ã
−1

B̃
(i)
, if i 6= l

therefore, it is possible to resume these cases in a single equation, using the
Kronecker delta symbol

S (l,i) = w
[
2(D̃

(i)
)−1C̃

(i)
Ã
−1

B̃
(i) − δliI

]
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CHAPTER 4

Analysis of devices with cylindrical
symmetry

4.1 Introduction

In this chapter we address the problem of the computation of the scattering matrix
of a two-port device with cylindrical symmetry, as the one sketched in Figure 4.1,
consisting of two cylindrical-to-conical junction. The formulation is derived for de-
vices filled with homogeneous permeability and permittivity. Indeed, this is the case
of interest for microwave and millimeter wave devices aimed at satellite communica-
tions and scientific instrumentation. Just like in the previous chapter, the numerical
method for the solution of the problem is based on a SEM scheme, considering the
presence of edges by building basis functions which keep into account Meixner con-
ditions. The main difference of this case with respect to the previous one is the
type of symmetry of the structure; as a matter of fact, in this case the structure is
invariant to the azimuthal angle ϕ, while in the previous case the invariance was
with respect to a cartesian coordinate.

The first step of the procedure is the determination of all the electromagnetic
field components as functions of Eϕ and Hϕ; these two components are both present
in the formulation, and they are the ones which are expanded in order to formu-
late a Galerkin-based method. Then, boundary conditions are applied, and finally
the numerical system which has as unknowns the vector of Galerkin coefficients is
written.

4.2 Determination of electromagnetic field com-

ponents

The formulation of the problem starts from Maxwell’s equations, expressed in fre-
quency domain;
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γPEC

γ
(1)
wg

γ
(2)
wg

γz

nwg(2)

nwg(1)

zwg(1) zwg(2)

b b
zz(1) z(2)

ρwg(1) = ρ ρwg(2)

b

ϕ

Figure 4.1: 2-D view of the connection of two circular waveguides through a conical
section.

{
∇× E = −jωµH

∇× H = jωεE
(4.1)

remembering that

k = ω
√
µε

Y =

√
ε

µ
=

1

Z

(4.2)

The first step for the solution of this problem is to express electric and magnetic
fields components as functions of Eϕ and Hϕ, in order to solve the problem in ϕ
first, and then to find all the other components.

Since this problem concerns the study of a structure with a circular transversal
section with respect to z direction, it is necessary to write the curl operator in the
cylindrical coordinate system, as follows

∇× A = ρ̂

(
1

ρ

∂Az
∂ϕ
− ∂Aϕ

∂z

)
+ ϕ̂

(
∂Aρ
∂z
− ∂Az

∂ρ

)
+ ẑ

1

ρ

(
∂(ρAϕ)

∂ρ
− ∂Aρ

∂ϕ

)
(4.3)

Using this last relation, it is necessary to write by components equations (4.1); the
result is, for the first equation,

1

ρ

∂Ez
∂ϕ
− ∂Eϕ

∂z
= −jωµHρ

∂Eρ
∂z
− ∂Ez

∂ρ
= −jωµHϕ

1

ρ

(
∂(ρEϕ)

∂ρ
− ∂Eρ

∂ϕ

)
= −jωµHz
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4.2. Determination of electromagnetic field components

while, for the second equation,

1

ρ

∂Hz

∂ϕ
− ∂Hϕ

∂z
= jωεEρ

∂Hρ

∂z
− ∂Hz

∂ρ
= jωεEϕ

1

ρ

(
∂(ρHϕ)

∂ρ
− ∂Hρ

∂ϕ

)
= jωεEz

Recognized the invariance to ϕ, the dependance of the electromagnetic field on
ϕ can be assumed to be

ejmϕ

so, it is possible to represent spectrally the dependence in ϕ by applying the
spatial Fourier transform on the ϕ variable. In other words,

d

dϕ
ejmϕ = jm ejmϕ =⇒ d

dϕ
←→ jm.

By performing this substitution on previous equations, it is possible to obtain

1

ρ
jmEz −

∂Eϕ
∂z

= −jωµHρ (4.4)

∂Eρ
∂z
− ∂Ez

∂ρ
= −jωµHϕ (4.5)

1

ρ

(
∂(ρEϕ)

∂ρ
− jmEρ

)
= −jωµHz (4.6)

and

1

ρ
jmHz −

∂Hϕ

∂z
= jωεEρ (4.7)

∂Hρ

∂z
− ∂Hz

∂ρ
= jωεEϕ (4.8)

1

ρ

(
∂(ρHϕ)

∂ρ
− jmHρ

)
= jωεEz (4.9)

The following step is the determination of the relationships between the ϕ com-
ponents of the electromagnetic field and the other ones. From (4.9),

Ez =
1

jωε

1

ρ

(
∂(ρHϕ)

∂ρ
− jmHρ

)
.

By substituting it in (4.4),

jm

ρ

{
1

jωε

1

ρ

[
∂(ρHϕ)

∂ρ
− jmHρ

]}
− ∂Eϕ

∂z
= −jωµHρ
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then, it is necessary to re-arrange this formula and to simplify it as

−jωµHρ =
m

ρ2

1

ωε

∂(ρHϕ)

∂ρ
− j

m2

ρ2ωε
Hρ −

∂Eϕ
∂z

i.e.

m

ρ2

1

ωε

∂(ρHϕ)

∂ρ
− ∂Eϕ

∂z
=

j

ωε

(
m2

ρ2
− ω2εµ

)
Hρ

Now, considering the fact that

Y k =

√
ε

µ
ω
√
εµ = ωε

it is possible to write the Hρ component as follows

Hρ = − jωε
m2

ρ2
− k2

(
m

ρ2ωε

∂(ρHϕ)

∂ρ
− ∂Eϕ

∂z

)
=

= − j

m2 − k2ρ2

(
m
∂(ρHϕ)

∂ρ
− kY ρ2∂Eϕ

∂z

)
(4.10)

Now, it is necessary to repeat the previous procedure, substituting (4.7) in (4.6),

Eρ =
1

jωε

(
jm

ρ
Hz −

∂Hϕ

∂z

)
in (4.6):

1

ρ

{
∂(ρEϕ)

∂ρ
− jm

[
1

jωε

(
jm

ρ
Hz −

∂Hϕ

∂z

)]}
= −jωµHz

Then, follow some re-organizations:

−jωµHz =
1

ρ

∂(ρEϕ)

∂ρ
− jm

ρ

1

jωε

(
1

ρ
jmHz −

∂Hϕ

∂z

)

ωερ
∂(ρEϕ)

∂ρ
+ ρm

∂Hϕ

∂z
= jm2Hz − jω2µερ2Hz

so,

j
(
m2 − k2ρ2

)
Hz = ρωε

∂(ρEϕ)

∂ρ
+mρ

∂Hϕ

∂z

then, finally,

Hz = − j

m2 − k2ρ2

(
kY ρ

∂(ρEϕ)

∂ρ
+mρ

∂Hϕ

∂z

)
(4.11)

Every term of the right-hand side member of this equation is multiplied by ρ.
This means that, for ρ = 0, the magnetic field component Hz equals zero. This
result will be useful later.
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4.2. Determination of electromagnetic field components

Now, starting from a modified version of (4.6),

Hz = − 1

jωµρ

(
∂(ρEϕ)

∂ρ
− jmEρ

)
and substituting it in (4.7), the result is

jm

ρ

[
− 1

jωµρ

(
∂(ρEϕ)

∂ρ
− jmEρ

)]
− ∂Hϕ

∂z
= jωεEρ

then, it has to be manipulated:

− m

ωµ

1

ρ2

∂(ρEϕ)

∂ρ
+ j

m2

ωµ

1

ρ2
Eρ −

∂Hϕ

∂z
= jωεEρ

so,

Eρ

(
jωε− j

m2

ωµ

1

ρ2

)
= − m

ωµ

1

ρ2

∂(ρEϕ)

∂ρ
− ∂Hϕ

∂z

− m

ωµ

∂(ρEϕ)

∂ρ
− ρ2∂Hϕ

∂z
= ρ2 j

ωµ

(
ω2εµ− m2

ρ2

)
Eρ

so,

−m∂(ρEϕ)

∂ρ
− ρ2kZ

∂Hϕ

∂z
= −j

(
m2 − k2ρ2

)
Eρ

finally,

Eρ = − j

m2 − k2ρ2

(
m
∂(ρEϕ)

∂ρ
+ kZρ2∂Hϕ

∂z

)
(4.12)

Then, the last component Ez, can be calculated as follows. Starting from (4.4),

Hρ = − 1

jωµ

(
1

ρ
jmEz −

∂Eϕ
∂z

)
it has to be substituted in (4.9);

1

ρ

{
∂(ρHϕ)

∂ρ
− jm

[
− 1

jωµ

(
1

ρ
jmEz −

∂Eϕ
∂z

)]}
= jωεEz

therefore,

1

ρ

∂(ρHϕ)

∂ρ
+ j

m2

ωµ

1

ρ2
Ez −

m

ωµ

1

ρ

∂Eϕ
∂z

= jωεEz

so,

j

ωµρ2

(
m2 − k2ρ2

)
Ez = −1

ρ

∂(ρHϕ)

∂ρ
+

m

ωµρ

∂Eϕ
∂z

and, finally,

Ez = − j

m2 − k2ρ2

(
mρ

∂Eϕ
∂z
− kZρ∂(ρHϕ)

∂ρ

)
(4.13)

Just like Hz, also Ez equals zero for ρ = 0 (i.e. in the z-axis).
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4. Analysis of devices with cylindrical symmetry

Resume of electromagnetic field components

From the previous section it was possible to find four relationships between the
derivatives of Eϕ and Hϕ, and all other components of the electromagnetic field.
These results are summarized here.

Eρ = − j

m2 − k2ρ2

(
m
∂(ρEϕ)

∂ρ
+ kZρ2∂Hϕ

∂z

)
(4.14)

Hρ = − j

m2 − k2ρ2

(
m
∂(ρHϕ)

∂ρ
− kY ρ2∂Eϕ

∂z

)
(4.15)

Ez = − j

m2 − k2ρ2

(
mρ

∂Eϕ
∂z
− kZρ∂(ρHϕ)

∂ρ

)
(4.16)

Hz = − j

m2 − k2ρ2

(
kY ρ

∂(ρEϕ)

∂ρ
+mρ

∂Hϕ

∂z

)
(4.17)

4.2.1 Derivation of electromagnetic field components rela-
tionships

Although the two second-order equations in Eϕ and Hϕ only can be easily derived
by inserting (4.14) - (4.17) in (4.5) - (4.8) respectively, it is convenient to shift
differential operators from field components to test functions. To this end, there is
a useful integral relation on vectors, proved in Appendix B.1.

∫∫
Σ

[
∂F2

∂x
− ∂F1

∂y

]
v dxdy = −

∫∫
Σ

[
F2
∂v

∂x
− F1

∂v

∂y

]
dxdy +

∮
γ

(Fv) · ds (4.18)

The first step is to consider (4.5) and (4.8) and formulate them in weak form,

by projecting them on two sets of test functions, V (h) =
{
v

(h)
β

}
and V (e) =

{
v

(e)
β

}
respectively. The projection operation involves the evaluation of integrals on the
entire domain Σ , which is shown in Figure 4.1. Hence, (4.5) and (4.8) become

∫∫
Σ

[
∂Eρ
∂z
− ∂Ez

∂ρ

]
v

(h)
β dρdz = −jωµ

∫∫
Σ

Hϕv
(h)
β dρdz, ∀v(h)

β ∈ V (h) (4.19)∫∫
Σ

[
∂Hρ

∂z
− ∂Hz

∂ρ

]
v

(e)
β dρdz = jωε

∫∫
Σ

Eϕv
(e)
β dρdz, ∀v(e)

β ∈ V (e) (4.20)

Considering the following definitions,{
E t , Ez ẑ + Eρρ̂

H t , Hz ẑ +Hρρ̂
(4.21)

where E t and H t are field components transversal with respect to ϕ, the last
two equations may be re-written applying (4.18) as follows
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4.2. Determination of electromagnetic field components

−jkZ

∫∫
Σ

Hϕv
(h)
β dρdz = −

∫∫
Σ

[
Eρ
∂v

(h)
β

∂z
− Ez

∂v
(h)
β

∂ρ

]
dρdz +

∮
γ

[
E tv

(h)
β

]
· ds

(4.22)

jkY

∫∫
Σ

Eϕv
(e)
β dρdz = −

∫∫
Σ

[
Hρ

∂v
(e)
β

∂z
−Hz

∂v
(e)
β

∂ρ

]
dρdz +

∮
γ

[
H tv

(e)
β

]
· ds

(4.23)

In the method of weighted residuals, the ϕ components of the electromagnetic

field are written as series expansions, using two sets of functions,
{
u

(e)
α

}
and

{
u

(h)
α

}
,

as follows;

Eϕ =
∞∑
α=0

c(e)
α u

(e)
α (4.24)

Hϕ =
∞∑
α=0

c(h)
α u(h)

α (4.25)

These two expansions now are substituted in (4.13) and (4.12), obtaining

Ez = − j

m2 − k2ρ2

[
mρ

∞∑
α=0

c(e)
α

∂u
(e)
α

∂z
− kZρ

∞∑
α=0

c(h)
α

∂(ρu
(h)
α )

∂ρ

]
(4.26)

Eρ = − j

m2 − k2ρ2

[
m
∞∑
α=0

c(e)
α

∂(ρu
(e)
α )

∂ρ
+ kZρ2

∞∑
α=0

c(h)
α

∂u
(h)
α

∂z

]
(4.27)

Then, (4.22) can be re-written using the expansion for the ϕ components, and
substituting (4.26) and (4.27):

−jkZ
∞∑
α=0

c(h)
α

∫∫
Σ

u(h)
α v

(h)
β dρdz =

∞∑
α=0

c(e)
α

∫∫
Σ

jm

m2 − k2ρ2

∂(ρu
(e)
α )

∂ρ

∂v
(h)
β

∂z
dρdz+

+
∞∑
α=0

c(h)
α

∫∫
Σ

jkZρ2

m2 − k2ρ2

∂u
(h)
α

∂z

∂v
(h)
β

∂z
dρdz+

−
∞∑
α=0

c(e)
α

∫∫
Σ

jmρ

m2 − k2ρ2

∂u
(e)
α

∂z

∂v
(h)
β

∂ρ
dρdz+

+
∞∑
α=0

c(h)
α

∫∫
Σ

jkZρ

m2 − k2ρ2

∂(ρu
(h)
α )

∂ρ

∂v
(h)
β

∂ρ
dρdz+

+

∮
γ

[
E tv

(h)
β

]
· ds (4.28)
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Re-organizing,

− jkZ
∞∑
α=0

c(h)
α

∫∫
Σ

u(h)
α v

(h)
β dρdz =

=
∞∑
α=0

c(h)
α

∫∫
Σ

{
jkZ

m2 − k2ρ2
ρ

[
ρ
∂u

(h)
α

∂z

∂v
(h)
β

∂z
+
∂(ρu

(h)
α )

∂ρ

∂v
(h)
β

∂ρ

]}
dρdz+

+
∞∑
α=0

c(e)
α

∫∫
Σ

{
jm

m2 − k2ρ2

[
∂(ρu

(e)
α )

dρ

∂v
(h)
β

∂z
− ρ∂u

(e)
α

∂z

∂v
(h)
β

∂ρ

]}
dρdz+

+

∮
γ

[
E tv

(h)
β

]
· ds (4.29)

Now, the same procedure is repeated with equations (4.23), (4.10), (4.11); more
in details:

Hρ = − j

m2 − k2ρ2

[
m
∞∑
α=0

c(h)
α

∂(ρu
(h)
α )

∂ρ
− kY ρ2

∞∑
α=0

c(e)
α

∂u
(e)
α

∂z

]
(4.30)

Hz = − j

m2 − k2ρ2

[
kY ρ

∞∑
m=0

c(e)
α

∂(ρu
(e)
α )

∂ρ
+mρ

∞∑
m=0

c(h)
α

∂u
(h)
α

∂z

]
(4.31)

so, substituting these equations in (4.23), the result is

jkY
∞∑
α=0

c(e)
α

∫∫
Σ

u(e)
α v

(e)
β dρdz =

∞∑
α=0

c(h)
α

∫∫
Σ

jm

m2 − k2ρ2

∂(ρu
(h)
α )

∂ρ

∂v
(e)
β

∂z
dρdz+

−
∞∑
α=0

c(e)
α

∫∫
Σ

jkY ρ2

m2 − k2ρ2

∂u
(e)
α

∂z

∂v
(e)
β

∂z
dρdz+

−
∞∑
α=0

c(e)
α

∫∫
Σ

jkY ρ

m2 − k2ρ2

∂(ρu
(e)
α )

∂ρ

∂v
(e)
β

∂ρ
dρdz+

−
∞∑
α=0

c(h)
α

∫∫
Σ

jmρ

m2 − k2ρ2

∂u
(h)
α

∂z

∂v
(e)
β

∂ρ
dρdz+

+

∮
γ

[
H tv

(e)
β

]
· ds

Now, re-arraging,
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jkY
∞∑
α=0

c(e)
α

∫∫
Σ

u(e)
α v

(e)
β dρdz =

=
∞∑
α=0

c(h)
α

∫∫
Σ

{
jm

m2 − k2ρ2

[
∂(ρu

(h)
α )

∂ρ

∂v
(e)
β

∂z
− ρ∂u

(h)
α

∂z

∂v
(e)
β

∂ρ

]}
dρdz+

+
∞∑
α=0

c(e)
α

∫∫
Σ

{
−jkY

m2 − k2ρ2
ρ

[
ρ
∂u

(e)
α

∂z

∂v
(e)
β

∂z
+
∂(ρu

(e)
α )

∂ρ

∂v
(e)
β

∂ρ

]}
dρdz+

+

∮
γ

[
H tv

(e)
β

]
· ds (4.32)

4.2.2 Application of boundary conditions

The next step is the exploitation of the boundary conditions in the evaluation of the
line integrals appeared in (4.29) and (4.32). More in details, those integrals may be
simplified, enforcing boundary conditions and keeping into account some previous
considerations. With reference to Figure 4.1, the boundary conditions are related to
both the metal walls and the continuity of the tangential fields at each waveguide
port. By assuming that the metal walls are made of perfect electrical conductor
(PEC), the relevant boundary condition is

n̂× E = 0 (4.33)

This means that the Eϕ component of the electric field must equal zero, because
it is entirely tangential to the surface of the device. Moreover, this equation requires
that, given ŝ the unit vector used for the representation of the curvilinear abscissa,
the transversal electric field with respect to the ϕ direction projected on the curve
is zero. So, given (4.21), it is possible to observe that ŝ has no components on ϕ
direction. So, the two boundary conditions which come from the first equation are

Eϕ = 0 (4.34)

E t · ŝ = 0 (4.35)

First of all, it may be necessary to review some informations about contour
integrals. Given a parametric curve s(t) with t ∈ [ta, tb] parameter, considering the
integration of a vector field F over the curve s(t), it is possible to write∫

C

F (s) · ds =

∫ tb

ta

F (s(t)) · s ′(t)dt (4.36)

With reference to Figure 4.1, γ is a curve composed by the access lines, connect-
ing the structure with the input waveguide, the PEC walls and the z-axis. In other
words:
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γ = γPEC

⋃
γ(1)

wg

⋃
γ(2)

wg

⋃
γz

so, it is possible to separate by inspection the line integral in four contributions,
which are: the two access lines (ports), the z-axis and the PEC contour. Hence, the
line integral in (4.29) becomes

∮
C

(
E tv

(h)
β

)
· ds =

∫
γz

[
E t (s(t)) v

(h)
β (s(t))

]
· s ′(t)dt+

+

∫
γ
(2)
wg

[
E t (s(t)) v

(h)
β (s(t))

]
· s ′(t)dt+

+

∫
γ
(1)
wg

[
E t (s(t)) v

(h)
β (s(t))

]
· s ′(t)dt+

+

∫
γPEC

[
E t (s(t)) v

(h)
β (s(t))

]
· s ′(t)dt

As far as the line integral along the z-axis is concerned, it has to be noted that

E t · s ′(t) = E t · ẑ =

= Ez

Since Ez = 0 for ρ = 0 (see (4.16)), this contribution equals zero.
The line integral relative to the PEC contribution is zero because of the boundary

condition (4.35), i.e.

E t · ds = 0.

Furthermore, the electromagnetic field has to be continue at each port. This
means that, for each k-th port,

∫
γ
(k)
wg

[
E t (s(t)) v

(h)
β (s(t))

]
· s ′(t)dt =

∫
γ
(k)
wg

[
E t,wg (s(t)) v

(h)
β (s(t))

]
· s ′(t)dt

This satisfies some of the continuity boundary condition at the input ports; in
addition, it will be necessary to enforce continuity of the Eϕ component too. In
conclusion:

∮
C

(
E tv

(h)
β

)
· ds =

∫
γ
(1)
wg

[
E t,wg (s(t)) v

(h)
β (s(t))

]
· s ′(t)dt+

+

∫
γ
(2)
wg

[
E t,wg (s(t)) v

(h)
β (s(t))

]
· s ′(t)dt (4.37)

About (4.32), most of considerations remain the same. First of all,
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∮
C

(
H tv

(e)
β

)
· ds =

∫
γz

[
H t (s(t)) v

(e)
β (s(t))

]
· s ′(t)dt+

+

∫
γ
(2)
wg

[
H t (s(t)) v

(e)
β (s(t))

]
· s ′(t)dt+

+

∫
γ
(1)
wg

[
H t (s(t)) v

(e)
β (s(t))

]
· s ′(t)dt+

+

∫
γPEC

[
H t (s(t)) v

(e)
β (s(t))

]
· s ′(t)dt

On the basis of (4.17), the z-axis contribution equals zero in this case too; fur-
thermore, just like in the previous case, it is necessary to enforce the continuity
condition on each port; Hence:

∫
γ
(k)
wg

[
H t (s(t)) v

(e)
β (s(t))

]
· s ′(t)dt =

∫
γ
(k)
wg

[
H t,wg (s(t)) v

(e)
β (s(t))

]
· s ′(t)dt

Hϕ continuity has to be enforced explicitly in this case too.
There is one last consideration, about the PEC contribution;∫

γPEC

[
H t (s(t)) v

(e)
β (s(t))

]
· s ′(t)dt

The PEC condition does not enforce the behavior of the transversal magnetic field
to equal zero. On the other hand, in the integral there are also the test functions v

(e)
β .

However, in the Galerkin version of the method of the weighted residuals method
used in this thesis, the test functions v

(e)
β coincide with the functions u

(e)
α used for

the expansion of Eϕ. Since the latter are defined in order to satisfy themselves the
PEC conditions, the integral equals zero. In conclusion,

∮
C

(
H tv

(e)
β (s(t))

)
· ds =

∫
γ
(1)
wg

[
H t (s(t)) v

(e)
β (s(t))

]
· s ′(t)dt+

+

∫
γ
(2)
wg

[
H t (s(t)) v

(e)
β (s(t))

]
· s ′(t)dt (4.38)

From (4.37) and (4.38) it is possible to observe that all non-vanishing contribu-
tions to the electric and magnetic transversal fields circuitation integrals are the ones
defined on the device ports. The latter can be either circular or conical waveguide
ports. For circular waveguide ports, s ′(t) is parallel to ρ̂ and, hence,

∫
γ
(1)
wg

[
E t,wg (s(t)) v

(h)
β (s(t))

]
· s ′(t)dt = −

∫ ρ
(1)
wg

0

Eρ,wg(ρ, zwg(1))v
(h)
β (ρ, zwg(1))dρ

(4.39)
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∫
γ
(1)
wg

[
H t,wg (s(t)) v

(e)
β (s(t))

]
· s ′(t)dt = −

∫ ρ
(1)
wg

0

Hρ,wg(ρ, zwg(1))v
(e)
β (ρ, zwg(1))dρ

(4.40)

∫
γ
(2)
wg

[
E t,wg (s(t)) v

(h)
β (s(t))

]
· s ′(t)dt =

∫ ρ
(2)
wg

0

Eρ,wg(ρ, zwg(2))v
(h)
β (ρ, zwg(2))dρ (4.41)

∫
γ
(2)
wg

[
H t,wg (s(t)) v

(e)
β (s(t))

]
· s ′(t)dt =

∫ ρ
(2)
wg

0

Hρ,wg(ρ, zwg(2))v
(e)
β (ρ, zwg(2))dρ (4.42)

4.2.3 Modal expansion of waveguide transversal fields

Now it is necessary to re-write H t,wg and E t,wg as functions of each incident wave

a
(k)
µ relative to the µ-th mode and the k-th device port. It is possible to expand

transversal fields of the waveguide as follows;
E

(k)
t,wg =

∞∑
µ=0

V (k)
µ (z)e(k)

µ (ρ)

H
(k)
t,wg =

∞∑
µ=0

I(k)
µ (z)e(k)

µ (ρ)

(4.43)

Where I
(k)
µ (z) and V

(k)
µ (z) are respectively the modal current and the modal volt-

age for the k-th port of the device relative to the µ-th mode. Since these quantities
satisfy modal transmission lines equations, it is possible to write

V (k)
µ (z) = V (k)+

µ e−jβ
(k)
µ z(k) + V (k)−

µ e+jβ
(k)
µ z(k)

Where each z(k) is the value of the z-coordinate considered, with respect to each
local coordinate system, relative to each k-th port. Moreover, considering that power
waves are defined as follows

a(k)
µ =

V
(k)+
µ√
Z

(k)
∞,µ

b(k)
µ =

V
(k)−
µ√
Z

(k)
∞,µ

it is possible to write

V (k)
µ (z) =

√
Z

(k)
∞,µa

(k)
µ e−jβ

(k)
µ z(k) +

√
Z

(k)
∞,µb

(k)
µ e+jβ

(k)
µ z(k)

therefore, by substituting in (4.43), it is possible to obtain

E
(k)
t,wg =

∞∑
µ=0

√
Z

(k)
∞,µ

[
a(k)
µ e−jβ

(k)
µ z(k) + b(k)

µ e+jβ
(k)
µ z(k)

]
e(k)
µ (ρ) (4.44)
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4.2. Determination of electromagnetic field components

In order to find an expression for the transversal magnetic field, it is necessary
to work on the total modal current.

I(k)
µ (z) = I(k)+

µ e−jβ
(k)
µ z(k) + I(k)−

µ e+jβ
(k)
µ z(k) = Y (k)

∞,µV
(k)+
µ e−jβ

(k)
µ z(k) − Y (k)

∞,µV
(k)−
µ e+jβ

(k)
µ z(k) =

=

√
Y

(k)
∞,µ

[
a(k)
µ e−jβ

(k)
µ z(k) − b(k)

µ e+jβ
(k)
µ z(k)

]
so, finally,

H
(k)
t,wg =

∞∑
µ=0

√
Y

(k)
∞,µ

[
a(k)
µ e−jβ

(k)
µ z(k) − b(k)

µ e+jβ
(k)
µ z(k)

]
h(k)
µ (ρ) (4.45)

Equations (4.44) and (4.45) are useful because they have informations about
both ρ and ϕ field components in the waveguide; so, it is possible to re-write the
integrals as follows:

∫ ρ
(k)
wg

0

Eρ,wg(ρ, zwg(k))v
(h)
β (ρ, zwg(k))dρ =

=
∞∑
µ=0

√
Z

(k)
∞,µ
[
a(k)
µ + b(k)

µ

] ∫ ρ
(k)
wg

0

e(k)
ρ,µ(ρ)v

(h)
β (ρ, zwg(k))dρ (4.46)

Using the same procedure, it is possible to find the following relationship

∫ ρ
(k)
wg

0

Hρ,wg(ρ, zwg(k))v
(e)
β (ρ, zwg(k))dρ =

=
∞∑
µ=0

√
Y

(k)
∞,µ
[
a(k)
µ − b(k)

µ

] ∫ ρ
(k)
wg

0

h(k)
ρ,µ(ρ)v

(e)
β (ρ, zwg(k))dρ (4.47)

The dependance on z(k) disappeared because, since each system is local, z(k) =
0, ∀k; as a matter of fact, each port is in the origin of its own local coordinate
system.

4.2.4 Continuity of ϕ components

In order to guarantee the continuity of the electromagnetic field at the interface
between the input waveguides and the device, it is necessary to enforce the continuity
of Eϕ and Hϕ components too. In other words, it is necessary to satisfy{

Eϕ = E(k)
ϕ,wg

Hϕ = H(k)
ϕ,wg

Starting from the ϕ component of the electric field, as known from (4.24), it may
be expanded as
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4. Analysis of devices with cylindrical symmetry

Eϕ =
∞∑
α=0

c(e)
α u

(e)
α

So, the continuity condition for Eϕ may be written in weak form, projecting both
left-hand and right-hand sides of the equation on a set of test functions. In order
to reduce the complexity of the system, as test functions it is possible to choose
waveguide modal function ϕ components, eϕ,q, where q is the modal index for the
1-dimensional projection. So, since these functions, for a fixed ϕ angle, are only
functions of ρ, it is possible to write, for input circular waveguides:∫ ρ

(k)
wg

0

Eϕ(ρ, zwg(k))e(k)
ϕ,ν(ρ)dρ =

∫ ρ
(k)
wg

0

E(k)
ϕ,wg(ρ, zwg(k))e(k)

ϕ,ν(ρ)dρ

which can be re-written, expanding the right-hand side member in the modal
basis, as

∞∑
α=0

c(e)
α

∫ ρ
(k)
wg

0

u(e)
α (ρ, zwg(k))e(k)

ϕ,ν(ρ)dρ =

=
∞∑
µ=0

√
Z

(k)
∞,µ
[
a(k)
µ + b(k)

µ

] ∫ ρ
(k)
wg

0

e(k)
ϕ,µ(ρ)e(k)

ϕ,ν(ρ)dρ (4.48)

The same procedure should be repeated about Hϕ. Recalling (4.25),

Hϕ =
∞∑
α=0

c(h)
α u(h)

α

it is possible to find, forHϕ the following relationship, using hϕ,ν as test functions,

∞∑
α=0

c(h)
α

∫ ρ
(k)
wg

0

u(h)
α (ρ, zwg(k))h(k)

ϕ,ν(ρ)dρ

=
∞∑
µ=0

√
Y

(k)
∞,µ
[
a(k)
µ − b(k)

µ

] ∫ ρ
(k)
wg

0

h(k)
ϕ,µ(ρ)h(k)

ϕ,ν(ρ)dρ (4.49)

4.3 Evaluation of expansion and test functions

The objective of this section is the determination of the expansion and test functions
for the ϕ components of the electric and magnetic fields in each patch. These
functions must comply with boundary conditions (4.34) and (4.35), recalled here.{

Eϕ = 0

E t · ŝ = 0
(4.50)

The first step is the definition of a non-specialized orthogonal basis for each sub-
domain, mapped in a canonical 2-dimensional domain, which is the [−1, 1]2 square.
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4.3. Evaluation of expansion and test functions

Then, these functions are weighted with Meixner functions, in order to take into
account the presence of edges. It is necessary to start from these weighted functions
and apply to them PEC boundary conditions, in order to find more specialized
functions. Finally, they must be orthonormalized and “glued”, finding global ba-
sis functions (basis functions for the whole domain) u

(e,h)
α , which were used in the

theoretical formulation of the problem. This subsection is focused on the enforcing
of boundary conditions, so on the determination of linear systems which must be
solved in order to find basis functions which satisfy PEC boundary conditions.

In the most general case, there is a unique set of vector basis functions,
{
f

(e,i)
α′

}
and

{
f

(h,i)
α′′

}
, which are electric and magnetic components respectively. α′ and α′′

are indexes of this vector; the former one is relative to electric components, while
the latter one is relative to magnetic components. Therefore, electric and magnetic
ϕ components can be expanded as follows:

Eϕ(ρ) =
Ne∑
α′=0

y
(e)
α′ f

(e,i)
α′ (ρ)

Hϕ(ρ) =

Nh∑
α′′=0

y
(h)
α′′ f

(h,i)
α′′ (ρ)

∀ρ ∈ D(i) (4.51)

where ρ = (z, ρ), is the transversal cylindrical coordinate, with respect to the
invariance coordinate ϕ.

Eϕ = 0 boundary condition

It is possible to start from the first PEC boundary condition, which is Eϕ = 0. This
condition can be satisfied in weak form, by testing it on a set of functions vq. For

each j-th parametric curve γ
(i)
j ∈ γ(i)

PEC, relative to the i-th patch,

〈Eϕ, vq〉|γ(i)j = 0

this can be written in integral form

∫
γ
(i)
j

Eϕvqdγ =
∑
α′

y
(e)
α′

∫
γ
(i)
j

f
(e,i)
α′ vqdγ

=
∑
α′

y
(e)
α′ L

(e,i)
qα′ = 0 (4.52)

It is important to remark that the integral is a line integral, where the γ
(i)
j line

represents each j-th PEC side belonging to D(i).

E t · ŝ = 0 boundary condition

Considering the reference system in Figure 4.2, ŝ is 90◦ degrees rotated with respect
to ν̂. Considering ϑ the angle of the normal of the surface evaluated starting from
the z-axis to the y-axis,
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4. Analysis of devices with cylindrical symmetry

z

ρ

ν

ϑ

s

γ
(k)
j

Figure 4.2: Reference system for the PEC boundary condition

ν̂ = ẑ cosϑ+ ρ̂ sinϑ

so, for the previous consideration,

ŝ = ẑ cos
(
ϑ+

π

2

)
+ ρ̂ cos

(
ϑ+

π

2

)
=

= −ẑ sinϑ+ ρ̂ cosϑ (4.53)

Since E t is trasversal to ϕ,

E t = Ez ẑ + Eρρ̂

therefore,

E t · ŝ = −Ez sinϑ+ Eρ cosϑ (4.54)

Ez and Eρ are known from (4.13) and (4.12) respectively, so they are recalled
and then substituted in (4.54).

Eρ = − j

m2 − k2ρ2

(
m
∂(ρEϕ)

∂ρ
+ kZρ2∂Hϕ

∂z

)
Ez = − j

m2 − k2ρ2

(
mρ

∂Eϕ
∂z
− kZρ∂(ρHϕ)

∂ρ

)

so

E t · ŝ =− j

m2 − k2ρ2

(
kZρ

∂(ρHϕ)

∂ρ
−mρ∂Eϕ

∂z

)
sinϑ+

− j

m2 − k2ρ2

(
m
∂(ρEϕ)

∂ρ
+ kZρ2∂Hϕ

∂z

)
cosϑ
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4.3. Evaluation of expansion and test functions

by re-arranging this equation, it is possible to identify two contributions;

E t · ŝ = − j

m2 − k2ρ2

[
kZρ

(
∂(ρHϕ)

∂ρ
sinϑ+ ρ

∂Hϕ

∂z
cosϑ

)
+

+m

(
∂(ρEϕ)

∂ρ
cosϑ− ρ∂Eϕ

∂z
sinϑ

)]
(4.55)

At this point, the second term can be expanded, obtaining

− ρ∂Eϕ
∂z

sinϑ+ ρ
∂Eϕ
∂ρ

cosϑ+ Eϕ cosϑ =

= ρ

(
−∂Eϕ
∂z

sinϑ+
∂Eϕ
∂ρ

cosϑ

)
+ Eϕ cosϑ

The term inside the parentheses equals the directional derivative of Eϕ along s.
In fact, it is known that

∂Eϕ
∂s

= ŝ ·
(
∇(ϕ)

t Eϕ

)
where ∇(ϕ)

t is the gradient in cylindrical coordinates, transversal with respect to
the ϕ variable. It may be written as

∇(ϕ)
t = ρ̂

∂

∂ρ
+ ẑ

∂

∂z

So, recalling ŝ from (4.53),

ŝ ·
(
∇(ϕ)

t Eϕ

)
= − sinϑ

∂Eϕ
∂z

+ cosϑ
∂Eϕ
∂ρ

just like in the second term. Therefore, the right-hand side of (4.55) can be
re-written as:

ρ
∂Eϕ
∂s

+ Eϕ cosϑ

In the previous subsection, Eϕ was enforced to equal zero in the entire PEC
plane. This means that the derivatives evaluated on the PEC plane in tangential
directions with respect to it, must equal zero, because the field is identically zero.
Therefore,

Eϕ = 0 ∀s ∈ γ(i)
j =⇒ ∂Eϕ

∂s
= 0 ∀s ∈ γ(i)

j

This means that the second term is vanishing. Therefore, the condition which
has to be satisfied is just

E t · ŝ = 0 =⇒ − j

m2 − k2ρ2

[
kZρ

(
∂(ρHϕ)

∂ρ
sinϑ+ ρ

∂Hϕ

∂z
cosϑ

)]
= 0
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4. Analysis of devices with cylindrical symmetry

So, it is necessary to request that the expression inside inner parentheses equals
zero; therefore,

Hϕ sinϑ+ ρ
∂Hϕ

∂ρ
sinϑ+ ρ

∂Hϕ

∂z
cosϑ =

= Hϕ sinϑ+ ρ
∂Hϕ

∂ν
= 0 (4.56)

In fact, considering the definition of directional derivative:

∂Hϕ

∂ν
= ρ̂

∂Hϕ

∂ρ
sinϑ+ ẑ

∂Hϕ

∂z
cosϑ

it is possible to prove that:

∂Hϕ

∂ν
= (∇tHϕ) · ν̂

this proves (4.56).
This is a boundary condition which enforces the value of a linear combination

of a field component and its normal derivative with respect to the PEC surface;
therefore, it is a Robin condition.

It is remarkable the fact that this boundary condition has no dependance on
frequency; as a matter of fact, this result is not trivial, because in previous steps there
was a relationship between Eϕ, Hϕ, and k. Moreover, functions f

(e,i)
α′ (ρ) and f

(h,i)
α′′ (ρ)

are not coupled, because boundary conditions enforce the behavior of electric or
magnetic fields Eϕ and Hϕ but not of their combinations.

In order to enforce (4.56), it is possible to formulate it in weak form;

〈E t · ŝ , vq〉 =

∫
γ
(i)
j

E t · ŝ vq dγ =

=

∫
γ
(i)
j

(
Hϕ sinϑ+ ρ

∂Hϕ

∂ν

)
vq dγ = 0 (4.57)

Expanding with f
(h,i)
α′′ (ρ) functions, it is possible to find the following integral

formulation

∑
α′′

y
(h)
α′′

∫
γ
(i)
j

[
f

(h,i)
α′′ sinϑ+ ρ

∂

∂ν
f

(h,i)
α′′

]
vq dγ =

=
∑
α′′

L
(h,i)
qα′′ y

(h)
α′′

where

L
(h,i)
qα′′ =

∫
γ
(i)
j

[
f

(h,i)
α′′ sinϑ+ ρ

∂

∂ν
f

(h,i)
α′′

]
vq dγ =

=

∫
γ
(i)
j

[
f

(h,i)
α′′ sinϑ+ ρ

(
∂

∂z
f

(h,i)
α′′ cosϑ+

∂

∂ρ
f

(h,i)
α′′ sinϑ

)]
vqdγ (4.58)
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4.4. Determination of the linear system

4.4 Determination of the linear system

Given equations (4.29) and (4.32), they have to be re-written in order to take into
account simplified expressions of contour integrals (4.46) and (4.47), and to expand

derivatives of (ρ u
(e,h)
α ); therefore, it is possible to write

− jkZ
∞∑
α=0

c(h)
α

∫∫
Σ

u(h)
α v

(h)
β dρdz =

=
∞∑
α=0

c(h)
α

∫∫
Σ

{
jkZ

m2 − k2ρ2
ρ

[
ρ
∂u

(h)
α

∂z

∂v
(h)
β

∂z
+ ρ

∂u
(h)
α

∂ρ

∂v
(h)
β

∂ρ
+ u(h)

α

∂v
(h)
β

∂ρ

]}
dρdz+

+
∞∑
α=0

c(e)
α

∫∫
Σ

{
jm

m2 − k2ρ2

[
ρ
∂u

(e)
α

dρ

∂v
(h)
β

∂z
+ u(e)

α

∂v
(h)
β

∂z
− ρ∂u

(e)
α

∂z

∂v
(h)
β

∂ρ

]}
dρdz+

+
∞∑
µ=0

√
Z

(2)
∞,µ
[
a(2)
µ + b(2)

µ

] ∫ ρ
(2)
wg

0

e(2)
ρ,µ(ρ)v

(h)
β (ρ, zwg(2))dρ+

−
∞∑
µ=0

√
Z

(1)
∞,µ
[
a(1)
µ + b(1)

µ

] ∫ ρ
(1)
wg

0

e(1)
ρ,µ(ρ)v

(h)
β (ρ, zwg(1))dρ (4.59)

jkY
∞∑
α=0

c(e)
α

∫∫
Σ

u(e)
α v

(e)
β dρdz =

=
∞∑
α=0

c(h)
α

∫∫
Σ

{
jm

m2 − k2ρ2

[
ρ
∂u

(h)
α

∂ρ

∂v
(e)
β

∂z
+ u(h)

α

∂v
(e)
β

∂z
− ρ∂u

(h)
α

∂z

∂v
(e)
β

∂ρ

]}
dρdz+

−
∞∑
α=0

c(e)
α

∫∫
Σ

{
jkY

m2 − k2ρ2
ρ

[
ρ
∂u

(e)
α

∂z

∂v
(e)
β

∂z
+ ρ

∂u
(e)
α

∂ρ

∂v
(e)
β

∂ρ
+ u(e)

α

∂v
(e)
β

∂ρ

]}
dρdz+

+
∞∑
µ=0

√
Y

(2)
∞,µ
[
a(2)
µ − b(2)

µ

] ∫ ρ
(2)
wg

0

h(2)
ρ,µ(ρ)v

(e)
β (ρ, zwg(2))dρ+

−
∞∑
µ=0

√
Y

(1)
∞,µ
[
a(1)
µ − b(1)

µ

] ∫ ρ
(1)
wg

0

h(1)
ρ,µ(ρ)v

(e)
β (ρ, zwg(1))dρ (4.60)

Up to this point every equation was written in terms of series. Actually, it is not
necessary to evaluate a sum of infinite terms in order to calculate these expressions,
because just few contributions are significative. Therefore, it is possible to write
approximated expressions for (4.59), (4.60), and for boundary conditions (4.48) and
(4.49) considering just few terms. Moreover, they can be written as a combination
of inner products instead of integrals.

131



4. Analysis of devices with cylindrical symmetry

jkZ

Nfun∑
α=0

c(h)
α

{〈
u(h)
α , v

(h)
β

〉
+

〈
ρ2

m2 − k2ρ2

∂

∂z
u(h)
α ,

∂

∂z
v

(h)
β

〉
+

+

〈
ρ2

m2 − k2ρ2

∂

∂ρ
u(h)
α ,

∂

∂ρ
v

(h)
β

〉
+

〈
ρ

m2 − k2ρ2
u(h)
α ,

∂

∂ρ
v

(h)
β

〉}
+

+jm

Nfun∑
α=0

c(e)
α

{〈
ρ

m2 − k2ρ2

∂

∂ρ
u(e)
α ,

∂

∂z
v

(h)
β

〉
+

〈
1

m2 − k2ρ2
u(e)
α ,

∂

∂z
v

(h)
β

〉
+

−
〈

ρ

m2 − k2ρ2

∂

∂z
u(e)
α ,

∂

∂ρ
v

(h)
β

〉}
=

=

Nmodes∑
µ=0

√
Z

(1)
∞,µ
[
a(1)
µ + b(1)

µ

] 〈
e(1)
ρ,µ, v

(h)
β

〉∣∣∣
γ
(1)
wg

−
Nmodes∑
µ=0

√
Z

(2)
∞,µ
[
a(2)
µ + b(2)

µ

] 〈
e(2)
ρ,µ, v

(h)
β

〉∣∣∣
γ
(2)
wg

(4.61)

jkY

Nfun∑
α=0

c(e)
α

{〈
u(e)
α , v

(e)
β

〉
+

〈
ρ2

m2 − k2ρ2

∂

∂z
u(e)
α ,

∂

∂z
v

(e)
β

〉
+

+

〈
ρ2

m2 − k2ρ2

∂

∂ρ
u(e)
α ,

∂

∂ρ
v

(e)
β

〉
+

〈
ρ

m2 − k2ρ2
u(e)
α ,

∂

∂ρ
v

(e)
β

〉}
+

+jm

Nfun∑
α=0

c(h)
α

{〈
ρ

m2 − k2ρ2

∂

∂z
u(h)
α ,

∂

∂ρ
v

(e)
β

〉}
−
〈

ρ

m2 − k2ρ2

∂

∂ρ
u(h)
α ,

∂

∂z
v

(e)
β

〉
−
〈

1

m2 − k2ρ2
u(h)
α ,

∂

∂z
v

(e)
β

〉
=

+

Nmodes∑
µ=0

√
Y

(2)
∞,µ
[
a(2)
µ − b(2)

µ

] 〈
h(2)
ρ,µ, v

(e)
β

〉∣∣∣
γ
(2)
wg

−
Nmodes∑
µ=0

√
Y

(1)
∞,µ
[
a(1)
µ − b(1)

µ

] 〈
h(1)
ρ,µ, v

(e)
β

〉∣∣∣
γ
(1)
wg

(4.62)

These equations have to be coupled with continuity conditions from (4.48) and
(4.49), obtaining the following extra equations:

Nfun∑
α=0

c(e)
α

〈
u(e)
α e

(k)
ϕ,ν

〉∣∣
γ
(k)
wg

=

Nmodes∑
µ=0

√
Z

(µ)
∞,µ
[
a(k)
µ + b(k)

µ

] 〈
e(k)
ϕ,µe

(k)
ϕ,ν

〉∣∣
γ
(k)
wg
,

ν = 0, 1, ..., Nmodes (4.63)
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Nfun∑
α=0

c(h)
α

〈
u(h)
α h(i)

ϕ,ν

〉∣∣
γ
(k)
wg

=

Nmodes∑
µ=0

√
Y

(k)
∞,µ
[
a(k)
µ − b(k)

µ

] 〈
h(k)
ϕ,µh

(k)
ϕ,ν

〉∣∣
γ
(k)
wg
,

ν = 0, 1, ..., Nmodes (4.64)

Where k = 1, 2, in 2-port devices case.
It is possible to re-arrange equations (4.61) and (4.62) in order to obtain a linear

system. Actually, these two equations must be satisfied ∀v(e/h)
β ∈ V (e/h); therefore,

there are two systems of integral equations. This must be coupled with another
system, in order to enforce continuity boundary conditions for both Eϕ and Hϕ.

To sum up, it is necessary to write a system in this form;


A(e,e)c(e) + A(e,h)c(h) =

2∑
k=1

(−1)k B (e,k)a(k) −
2∑

k=1

(−1)k B (e,k)b(k)

A(h,e)c(e) + A(h,h)c(h) =
2∑

k=1

(−1)k+1 B (h,k)a(k) +
2∑

k=1

(−1)k+1 B (h,k)b(k)

{
C (e,k)c(e) = D (e,k)a(k) + D (e,k)b(k)

C (h,k)c(h) = D (h,k)a(k) − D (h,k)b(k)
∀k ∈ {1, 2}

The unknown of the system is the vector c of coefficients for field expansions
(4.24) - (4.25).
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APPENDIX A

Appendix of Chapter 2

A.1 Resume of Bessel functions main properties

It may be useful to recall some important properties of Bessel functions; this sub-
section is mainly focused on Jn(x), where x often in the text is kρ. The power series
representation of Jn(x) is

Jn(x) =
∞∑
m=0

(−1)m

m!(n+m)!

(x
2

)n+2m

This expression leads to the following formula

Jn(−x) = (−1)n Jn(x)

If x ∼ 0, it is possible to approximate the expression with

Jn(x) ∼ 1

n!

(x
2

)n
If x→∞, there is an asymptotic expression

Jn(x) ∼
√

2

πx
cos
(
x− π

4
− nπ

2

)
Now in order to use a simpler notation, every following relation will be repre-

sented using a generic function Zn(x); Zn may be Jn (n-th order Bessel function of

first kind), Yn (Bessel function of second kind), H
(1,2)
n (Hankel functions of first or

second kind).
In order to find recursive relations, there are two important expressions

d

dx
[xnZn(x)] = xnZn−1(x)

d

dx

[
x−nZn(x)

]
= −x−nZn+1(x)
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These two equations are useful to integrate Bessel functions multiplied by their
argument. From these expressions it is possible to obtain the recursive relations

x
d

dx
Zn(x) = nZn(x)− xZn+1(x) = −nZn(x) + xZn−1(x)

2
d

dx
Zn(x) = Zn−1(x)− Zn+1(x)

2nZn(x) = x [Zn−1(x) + Zn+1(x)]

Using the theory of Laurent expansions it is possible to obtain the following
integral relation; starting from

e
1
2
x(t− 1

t ) =
+∞∑

n=−∞

Jn(x)tn

it is possible to prove that

Jn(x) =
1

2π

∫ +π

−π
e−jnϑ+jx sinϑdϑ =

=
1

π

∫ π

0

cos (nϑ− x sinϑ) dϑ

Other important formulae are the integral ones; the first one is the Lommel’s
integral formula

∫ x

0

Zn(kx)Zn(lx)xdx =
x

k2 − l2 [kZn(lx)Zn+1(kx)− lZn(kx)Zn+1(lx)]

and the following relation∫ x

0

Z2
n(kx)xdx =

x2

2

[
d

dx
Zn(x) +

(
1− n2

k2x2

)
Z2
n(kx)

]
A.1.1 Resume of spherical Bessel functions properties

In this subsection we will show some properties of spherical Bessel and Hankel
functions, in order to be able to manage them. Spherical Bessel and Hankel functions
are solutions of spherical Bessel equation, but they are strictly related with Bessel
and Hankel functions. In fact,

jn(x) =

√
π

2x
Jn+ 1

2
(x)

yn(x) =

√
π

2x
Yn+ 1

2
(x)

(A.1)

Between spherical Bessel and Hankel functions there is the same relationship of
cylindrical Bessel and Hankel functions;
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h(1)
n (x) = jn(x) + jyn(x)

h(2)
n (x) = jn(x)− jyn(x)

(A.2)

Since these functions are so related with Bessel functions, almost every property
of cylindrical Bessel or Hankel functions is a property of spherical Bessel or Hankel
functions too.

A.2 Unwrap functions

In this appendix is included the MATLABr code of unwrap functions for both TM
and TE modes of a circular waveguide.

Approximation of ∠H(1,2)
m (x)

f unc t i on phi=f_Eval_Hphiapprox (z , m )
% func t i on phi=f Eval Hphiapprox ( z ,m)
%
% This func t i on ext imates the phase o f MATLAB func t i on b e s s e l h (nu , 1 , z , 1 ) ,
% which implements the Hankel func t i on o f f i r s t kind . This func t i on keeps
% in to account the exp ( j z ) , s i n c e i t i s a l r eady i n s i d e b e s s e l h ( ) .
%
% For case m=0, i t i s used the −pi /4 constant . For m>0, i t i s used the
% asymptotic expansion a f t e r the f i r s t ze ro o f the Bes s e l f unc t i on o f
% second kind Y. These f u n c t i o n s are an implementation o f formulae from
% Abramowitz−Stegun ( more in d e t a i l s , ( 9 . 2 . 2 9 ) , without c o n s i d e r i n g as
% p r e v i o u s l y wr i t t en the term in ”x ” , a l r eady in to b e s s e l h ( ) ) .
%
% Input parameters
%
% z : v a r i a b l e in which Hankel f unc t i on i s eva luated
%
% m : azimuthal index ( order o f Hankel f unc t i on )
%
% Outputs
%
% phi : approximation o f the phase o f Hankel f unc t i on
%

i f m==0
phi=−pi /4∗ ones (1 , l ength ( z ) ) ;

e l s e
phi=−pi /2∗ ones (1 , l ength ( z ) )−z ;
yz=m+0.9315768∗m ˆ(1/3) +0.260351∗mˆ(−1/3) +0.01198/m−0.0060∗mˆ(−5/3)−0.001∗m←↩

ˆ(−7/3) ; % 2nd kind Bes s e l f unc t i on 1 s t ze ro approximation
ind=f i n d (z>yz ) ;
mu=4∗m ˆ2 ;
phi ( ind )=−(m/2+0.25)∗ pi+(mu−1) . / ( 8∗ z ( ind ) ) + . . . % Phase approximation f o r H m←↩

ˆ{ (1) } ( Abramowitz−Stegun , 9 . 2 . 2 9 ) .
( mu−1)∗( mu−25) . / ( 6∗ ( 4∗ z ( ind ) ) . ˆ 3 ) +(mu−1)∗( muˆ2−114∗mu+1073) . / ( 5∗ ( 4∗ z ( ind )←↩

) . ˆ 5 ) + . . .
( mu−1)∗(5∗ muˆ3−1535∗muˆ2+54703∗mu−375733) . / (14∗ ( 4∗ z ( ind ) ) . ˆ 7 ) ;

end

Unwrap function for cylindrical waveguide TM modes
f unc t i on phi=f_Eval_CylRTPSTM ( kt , rext , m , mode )
% func t i on phi=f Eval CylRTPSTM ( kt , rext ,m, mode)
%
% This func t i on eva lua t e s the Round Trip Phase Sh i f t , d iv ided by 2 pi , f o r
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% TM modes o f an empty waveguide with c i r c u l a r t r a n s v e r s a l s e c t i o n . This
% func t i on i s based on the use o f f Eval Hphiapprox , which approximates the
% phase o f the Hankel f unc t i on o f f i r s t kind . In t h i s func t i on i t i s
% nece s sa ry to keep in to account the presence o f the exp ( x ) .
%
% Input parameters
%
% kt : va lue o f kt , in order to perform the e s t imat ion ;
%
% rext : r ad iu s o f the t r a n s v e r s a l s e c t i o n o f the waveguide
%
% m : azimuthal index
%
% mode : r a d i a l index n
%
% Outputs
%
% phi : approximated RTPS
%

phi=(1+mode ) ∗ones (1 , l ength ( kt ) ) ;

ind=f i n d ( kt˜=0) ;
i f ˜ isempty ( ind )

thetaext=f_Eval_Hphiapprox ( kt ( ind ) ∗rext , m ) ;
h1ext=besselh (m , 1 , kt ( ind ) ∗rext , 1 ) ;
h2ext=conj ( h1ext ) ;
phi ( ind ) =0.5−(2∗ ang le ( h1ext .∗ exp(−j∗thetaext ) ) + . . .

+2∗kt ( ind ) ∗rext . . .
+2∗thetaext ) /(2∗ pi )+mode ;

end % i f ˜ isempty ( ind )

Approximation of the phase of the derivative of H
(1,2)
m (x)

f unc t i on phi=f_Eval_HDerphiapprox (z , m )
% func t i on phi=f Eval HDerphiapprox ( z ,m)
%
% This func t i on ext imates the phase o f the d e r i v a t i v e o f MATLAB func t i on
% b e s s e l h (nu , 1 , z , 1 ) , which implements the Hankel f unc t i on o f f i r s t kind .
% This func t i on keeps in to account the exp ( j z ) , s i n c e i t i s a l r eady i n s i d e
% b e s s e l h ( ) .
%
% For case m=0, i t i s used the −pi /4 constant . For m>0, i t i s used the
% asymptotic expansion a f t e r the f i r s t ze ro o f the Bes s e l f unc t i on o f
% second kind Y. These f u n c t i o n s are an implementation o f formulae from
% Abramowitz−Stegun ( more in d e t a i l s , ( 9 . 2 . 3 1 ) , without c o n s i d e r i n g as
% p r e v i o u s l y wr i t t en the term in ”x ” , a l r eady in to b e s s e l h ( ) ) .
%
% Input parameters
%
% z : v a r i a b l e in which Hankel f unc t i on i s eva luated
%
% m : azimuthal index ( order o f Hankel f unc t i on )
%
% Outputs
%
% phi : approximation o f the phase o f Hankel f unc t i on
%

i f m==0
a=0.75;
phi=pi/2−a+s q r t ( aˆ2+z . ˆ 2 )−z ;

e l s e
phi=pi /2∗ ones (1 , l ength ( z ) )−z ;
jpz=m+0.8086165∗m ˆ(1/3) +0.07249∗mˆ(−1/3)−0.05097/m+0.094∗mˆ(−5/3) ;
ind=f i n d (z>jpz ) ;
mu=4∗m ˆ2 ;
phi ( ind )=−(m/2−0.25)∗ pi+(mu+3) . / ( 8∗ z ( ind ) ) + . . .
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( muˆ2+46∗mu−63) . / ( 6∗ ( 4∗ z ( ind ) ) . ˆ 3 ) + . . .
( muˆ3+185∗muˆ2−2053∗mu+1899) . / ( 5∗ ( 4∗ z ( ind ) ) . ˆ 5 ) ;

end

Unwrap function for cylindrical waveguide TE modes
f unc t i on phi=f_Eval_CylRTPSTE ( kt , rext , m , mode )
% func t i on phi=f Eval CylRTPSTE ( kt , rext ,m, mode)
%
% This func t i on eva lua t e s the Round Trip Phase Sh i f t , d iv ided by 2 pi , f o r
% TE modes o f an empty waveguide with c i r c u l a r t r a n s v e r s a l s e c t i o n . This
% func t i on i s based on the use o f f Eval HDerphiapprox , which approximates
% the phase o f the Hankel func t i on o f f i r s t kind . In t h i s f unc t i on i t i s
% nece s sa ry to keep in to account the presence o f the exp ( x ) .
%
% Input parameters
%
% kt : va lue o f kt , in order to perform the e s t imat ion ;
%
% rext : r ad iu s o f the t r a n s v e r s a l s e c t i o n o f the waveguide
%
% m : azimuthal index
%
% mode : r a d i a l index n
%
% Outputs
%
% phi : approximated RTPS
%

phi=(1+mode ) ∗ones (1 , l ength ( kt ) ) ;
ind=f i n d ( kt˜=0) ;
i f ˜ isempty ( ind )

thetaext=f_Eval_HDerphiapprox ( kt ( ind ) ∗rext , m ) ;
h1ext=besselh ( [ m ; m+1] ,1 , kt ( ind ) ∗rext , 1 ) ;
i f l ength ( ind )>1

h1extD=−h1ext ( : , 2 )+m . / ( kt ( ind ) ∗rext ) . ' . ∗ h1ext ( : , 1 ) ;
phi ( ind ) =.5−(2∗ ang le ( h1extD . ' . ∗ exp(−j∗thetaext ) ) + . . .

+2∗kt ( ind ) ∗rext . . .
+2∗thetaext ) /(2∗ pi )+mode ;

e l s e %i f l ength ( ind )>1
h1extD=−h1ext (2 )+m . / ( kt ( ind ) ∗rext ) . ' . ∗ h1ext (1 ) ;
h2extD=conj ( h1extD ) ;
phi ( ind ) =0.5−(2∗ ang le ( h1extD . ' . ∗ exp(−j∗thetaext ) ) + . . .

+2∗kt ( ind ) ∗rext . . .
+2∗thetaext ) /(2∗ pi )+mode ;

end %i f l ength ( ind )>1
end %i f ˜ isempty ( ind )

A.3 Resume of associated Legendre functions prop-

erties

Just like Bessel functions or trigonometric functions, also associated Legendre func-
tions satisfy several relationships. First of all, a recurrence relation, which may be
used for instance in spectral methods

(n−m+ 1) Pm
n+1(x) = (2n+ 1)xPm

n (x)− (n+m)Pm
n−1(x) (A.3)

Another useful relationship is:
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(
1− x2

) d

dx
Pm
n (x) = (n+m)Pm

n−1(x)− nxPm
n (x) (A.4)

this permits to represent the “Legendre operator” in (2.6) and (2.7) if necessary.
Another useful property, for the evaluation of associated Legendre function

derivative using associated Legendre functions of different order, is the following
one;

(
x2 − 1

) dPm
p (x)

dx
= (p+m) (p−m+ 1)

√
x2 − 1 Pm−1

p (x) (A.5)

Finally, some important values, useful for instance to enforce boundary condi-
tions, are

Pm
n (1) =

{
1, if m = 0,

0, if m 6= 0.
(A.6)

Pm
n (1) =

{
(−1)n, if m = 0,

0, if m 6= 0.
(A.7)

A.4 Properties of Gegenbauer polynomials

Solutions of equation (2.12) are Gegenbauer Polynomials1 G(x) = C
(λ)
κ (x). Gegen-

bauer equation was found starting from associated Legendre function, so using m
instead of λ as a parameter for identifying the solution we are interested in. However,
it is possible to relate associated Legendre functions and Gegenbauer polynomials
using the following formulae;

Pm
n (x) = k1

(
1− x2

)m
2 C

(m+ 1
2)

n−m (x)

C(λ)
κ (x) = k2

(
1− x2

)−(λ− 1
2)

2 P
λ− 1

2

κ+λ− 1
2

(x)

(A.8)

where k1,2 are two constants. The first equation shows how a Legendre function
of order m and degree n is related with the Gegenbauer polynomial using n and
m to identify it (it is simply (2.11) equation). The second equation is the inverse
of the first one, so it relates a Gegenbauer polynomial with an associated Legendre
function using κ and λ as parameters. From these two equations it is possible to
deduce some relations between Gegenbauer and associated Legendre polynomials
parameters;

m = λ− 1

2
κ = n−m

(A.9)

Gegenbauer polynomials have several useful properties. The first interesting
formula gives the value of Gegenbauer polynomials in x = 1;

1also known as ultraspherical polynomials
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C(λ)
κ (x) =

(
κ+ 2λ− 1

κ

)
(A.10)

this property may be useful to implement a boundary condition for x = 1. In
order to work on x = −1, there is the following relationship;

C(λ)
κ (−x) = (−1)κC(λ)

κ (x) (A.11)

Another useful property is the one which may be used to evaluate the derivative
of a Gegenbauer polynomial, which is

d

dx
C(λ)
κ (−x) = 2λC

(λ+1)
κ−1 (x) (A.12)

there is another relationship between derivatives of Gegenbauer polynomials;

d

dx

[
C

(λ)
κ+1(x)− C

(λ)
κ−1(x)

]
= 2(κ+ λ)C(λ)

κ (x)

= 2λ
[
C(λ+1)
κ (x)− C

(λ+1)
κ−2 (x)

]
κ ≥ 1,C

(λ)
−1(x) = 0

(A.13)

The last differential equation shown is the actual Gegenbauer equation, which is
connected to the equation in G(x)

(
1− x2

) d2

dx2
C(λ)
κ (x)− (2λ+ 1)

d

dx
C(λ)
κ (x) + κ(κ+ 2λ)C(λ)

κ (x) (A.14)

Finally, a fundamental property is the recurrence relationship between Gegen-
bauer polynomials, which may be used for many purposes:

κC(λ)
κ (x) = 2(κ+ λ− 1)xC

(λ)
κ−1(x)− (κ+ 2λ− 2)C

(λ)
κ−2(x), κ ≥ 2 (A.15)

where

C
(λ)
0 (x) = 1

C
(λ)
1 (x) = 2λx

(A.16)

In this study λ will equal nπ
2
, where n is an odd integer number. κ may be either

integer or non-integer, depending on the considered calculations. Most of the time
Gegenbauer polynomials will be used as expansion or test functions, not as solutions
of Gegenbauer equations, so κ will be an integer number and so it will be renamed
as n, for coherence with previous cases.
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A.5 Chebyshev polynomials

In order to implement numerical methods based on Chebyshev polynomials of first
kind Tn(x) (which will be named simply “Chebyshev polynomials”), it may be useful
to introduce their most significative relationships.

Chebyshev polynomials can be generated using the following trigonometric def-
inition

Tn(cosϑ) = cos (nϑ) (A.17)

where

x = cosϑ

so

Tn(x) = cos (n arccosϑ) (A.18)

Moreover, there is a recurrence relationship for the computation of Chebyshev
polynomials. Given

T0(x) = 1 T1(x) = x

it is possible to compute all other Chebyshev polynomials as

Tn+1(x) = 2xTn(x)− Tn−1(x) (A.19)

About remarkable values, it may be shown that

Tn(1) = 1 (A.20)

Furthermore, Chebyshev polynomials of even order are even functions, of odd
order are odd functions.

Tn(−x) = (−1)nTn(x) (A.21)

so, for the x = −1,

Tn(−1) = (−1)n (A.22)

Finally, there is a differential relationship between Chebyshev polynomials of
first and second kind Un(x)

d

dx
Tn(x) = nUn−1(x), n = 1, 2... (A.23)

There are recurrence relationships for Chebyshev polynomials of the second kind
too; considering that

U0(x) = 1 U1(x) = 2x

it may be proved that
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Un+1(x) = 2xUn(x)− Un−1(x) (A.24)

Finally, about the boundary values of Chebyshev polynomials of second kind

Un(1) = n+ 1 (A.25)

Un(−1) = (−1)nUn(x) = (−1)n(n+ 1) (A.26)

Those formulae can be used together in order to find the boundary value of the
derivative of Chebyshev polynomials. In fact,

d

dx
Tn(x)

∣∣∣∣
x=−1

= nUn−1(−1) = n2(−1)n−1 (A.27)

A.6 Interval mapping

Orthogonal polynomials are solutions of differential equations with singularities
which are located in x = ±1. Therefore, the interval ξ ∈ [−1; 1] is called canoni-
cal interval . On the other hand, for this study the interesting interval is usually
x ∈ [x0, 1].

Numerical methods belonging to both pseudospectral and spectral families are
easier to apply to differential equations (with appropriate boundary conditions)
defined in ξ interval; therefore, the equation has to be re-written using ξ instead of
x as independent variable. To sum up, the procedure is:

1. find the mapping function from ξ interval [−1, 1] to x interval [x0, 1];

2. re-write the differential equation in ξ variable;

3. solve it by applying a numerical method;

4. represent the solution in the natural interval x.

The mapping function may be basically any function which maps x = x0 and
x = x1 points in ξ = −1 and ξ = +1 points respectively. The first idea is to use a
linear transformation:

x = J1ξ + J0 (A.28)

so, considering two points x0 and x1, where x1 will be mapped in +1 at the end
of the calculations, {

x0 = −a+ b

x1 = a+ b

from which:
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x1 + x0 = 2b

=⇒ b = J0 =
x1 + x0

2
(A.29)

x1 − x0 = 2a

=⇒ a = J1 =
x1 − x0

2
(A.30)

Now it is possible to substitute x with (A.28). The last problem is the represen-
tation of the derivatives.

dG(x)

dx
=

dG(ξ)

dξ

dξ

dx
=

dG(ξ)

dξ

(
dx

dξ

)−1

=

=
1

J1

dG(ξ)

dξ
(A.31)

d2G(x)

dx2
=

d

dx

[
dG(x)

dx

]
=

d

dx

[
1

J1

dG(ξ)

dξ

]
=

=
1

J2
1

d2G(ξ)

dξ2
(A.32)
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Appendix of Chapters 3 and 4

B.1 A vector integral theorem

Here is reported the proof of the integral vector theorem used in Subsection 4.2.1
for the application of Galerkin method. Given a vector field F defined as

F = F1x̂ + F2ŷ

and a set of test functions {vi}, where F1, F2, vi ∈ C(1)(Σ ), Σ is an open do-
main, Σ ⊂ R2, where ∂Σ is defined as a simple, piece-wise regular closed arch γ,
counterclockwise,

∫∫
Σ

[
∂F2

∂x
− ∂F1

∂y

]
v dxdy = −

∫∫
Σ

[
F2
∂v

∂x
− F1

∂v

∂y

]
dxdy +

∮
γ

(Fv) · ds (B.1)

Proof

Given F a vector field and v a scalar function, there is the following vector relation-
ship;

∇t × (Fv) = (∇tv)× F + (∇t × F ) v (B.2)

Another useful relationship is the scalar Stokes theorem;∫∫
Σ

[∇× F ] · ẑ dΣ =

∮
γ

F · ds (B.3)

It is possible to re-write the integrand as follows;

∇× F = −x̂
∂F2

∂x
+ ŷ

∂F1

∂z
+ ẑ

(
∂F2

∂x
− ∂F1

∂y

)
then, considering the “ẑ·” operation, the equation becomes
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∫∫
Σ

[
∂F2

∂x
− ∂F1

∂y

]
dxdy =

∮
γ

F · ds (B.4)

So, by substituting (B.4) in (B.2),

∮
γ

(Fv) · ds =

∫∫
Σ

[∇× (Fv)] · ẑ dΣ =

=

∫∫
Σ

[(∇tv)× F ] · ẑ dΣ +

∫∫
Σ

[∇t × F ] v dΣ

then, ∫∫
Σ

[∇t × F ] v dΣ = −
∫∫

Σ

[(∇tv)× F ] · ẑ dΣ +

∮
γ

(Fv) · ds

Now, integrands belonging to the first and to the second integrals can be re-
written by components; considering the second one,

(∇tv)× F = ẑ ·
[(

∂v

∂x
x̂ +

∂v

∂y
ŷ

)
× (F1x̂ + F2ŷ)

]
=

= F2
∂v

∂x
− F1

∂v

∂y

therefore, by substituting this expression (and the previous one) in the last in-
tegral expression, it is possible to find (B.1).

B.2 Computation of a line integral

In this section are shown steps necessary to reach results shown in Subsection 4.2.2.∫ tb
wg(1)

ta
wg(1)

[
E t,wg (s(t)) v

(h)
β (s(t))

]
· s ′(t)dt

As it is possible to see from Figure 4.1, the integral relative to the port (1) must
be done starting from the upper point (ρwg(1) , 0), ending to the lower point (0, 0)
(considering the (ρ, z) plane). Furthermore, the piece of curve s(t) which connects
these two points is a piece of a straight line. So, it is possible to write

s(t) = −ρ̂γ(t)

where γ(t) is the equation of a straight line in t which satisfies{
s(ta

wg(1)
) = −ρ̂γ(ta

wg(1)
) = ρ̂ ρwg(1)

s(tb
wg(1)

) = −ρ̂γ(tb
wg(1)

) = ρ̂ 0 = 0

so
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{
γ(ta

wg(1)
) = −ρwg(1)

γ(tb
wg(1)

) = 0

The straight line which satisfies previous equations can be calculated as follows

γ(t)− (−ρwg(1))

0− (−ρwg(1))
=

t− ta
wg(1)

tb
wg(1)
− ta

wg(1)

so

γ(t) =
ρwg(1)

tb
wg(1)
− ta

wg(1)

(t− ta
wg(1)

)− ρwg(1)

This is the most general choice for γ(t). The smartest choice implies the use of
canonical integral bounds. {

ta
wg(1)

= 0

tb
wg(1)

= 1

so, the parametric curve becomes

γ(t) = ρwg(1)t− ρwg(1)

And

s(t) = −ρ̂
[
ρwg(1)t− ρwg(1)

]
=⇒ ds(t) = −ρ̂ρwg(1)dt

Finally, keeping into account all these considerations, the integral becomes

∫ tb
wg(1)

ta
wg(1)

[
E t,wg (s(t)) v

(h)
β (s(t))

]
· s ′(t)dt

=

∫ 1

0

[
E t,wg

(
−ρ̂
(
ρwg(1)t− ρwg(1)

))
v

(h)
β

(
−ρ̂
(
ρwg(1)t− ρwg(1)

))]
·
[
−ρ̂ρwg(1)

]
dt =

=−
∫ 1

0

[
Eρ,wg

(
−ρ̂
(
ρwg(1)t− ρwg(1)

))
v

(h)
β

(
−ρ̂
(
ρwg(1)t− ρwg(1)

))]
ρwg(1)dt

Now, it is possible to proceed, defining the following change of variable;

τ = ρwg(1)t− ρwg(1) =⇒ dτ = −ρwg(1)

so, for t = 1, τ = 0, and for t = 0, τ = −ρwg(1) . Moreover,

dt =
1

ρwg(1)

dτ

so

= −
∫ 0

−ρ
wg(1)

[
Eρ,wg (−ρ̂τ) v

(h)
β (−ρ̂τ)

]
dτ
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Finally, with a last change of variable, ρ = −τ , which implies dτ = −dρ, it is
obtained

∫ tb
wg(1)

ta
wg(1)

[
E t,wg (s(t)) v

(h)
β (s(t))

]
· s ′(t)dt = −

∫ ρ
wg(1)

0

Eρ,wg(ρ, zwg(1))v
(h)
β (ρ, zwg(1))dρ

B.3 Determination of modal eigenfunctions for the

circular waveguide

Usually, the generating functions Φmn and Ψmn of the modal eigenfunctions for TM
and TE modes, are provided for linear polarization:

Φmn = Amn Jm(k′t,iρ)
cos
sin

mϕ

Ψmn = Bmn Jm(k′′t,iρ)
cos
sin

mϕ

In Chapter 4 circularly polarized fields have been considered, since the depen-
dance on the azimuthal coordinate ϕ is assumed to be e+jmϕ. Therefore, in this
case,

Φmn = Amn Jm(k′t,iρ) e+jmϕ

Ψmn = Bmn Jm(k′′t,iρ) e+jmϕ
(B.5)

The objective of this section is to calculate Amn and Bmn, in this case.
Starting with Φmn, given a the radius of the transversal section of the waveguide,

〈Φi,Φj〉 =

∫ 2π

0

∫ a

0

ΦiΦ
∗
jρdρdϕ = δij

∫ 2π

0

∫ a

0

A2
mnJ2

m(k′t,iρ)e+jmϕe−jmϕρdρdϕ

= A2
mnδij

∫ 2π

0

dϕ

∫ a

0

ρJ2
m(k′t,iρ)dρ = 2πδijA

2
mn

∫ a

0

ρJ2
m(k′t,iρ)dρ

where i and j are multiple indexes, of type (m,n).
Recalling the following integral formula relative to Bessel functions,∫ x

0

Z2
n(kx)xdx =

x2

2

[
d

dx
Zn(x) +

(
1− n2

k2x2

)
Z2
n(kx)

]
one contribution goes to zero (in fact, Jm(k′t,ia) = 0, since k′t,i = χmn

a
, where χmn

is the n-th zero of the m-order Bessel function of first kind), this integral is known
in closed form, and the result is

〈Φi,Φj〉 = πA2
mna

2
[
Jm+1(k′t,ia)

]2
therefore,

148



B.3. Determination of modal eigenfunctions for the circular waveguide

Amn =
1√
π

1

a Jm+1(k′t,ia)
(B.6)

It is possible to repeat the same procedure on Ψmn, and the result is, considering
again Lommel’s formula (where one integral vanishes, since k′′t,i = χ′mn

a
, where χ′mn

is the n-th zero of the first derivative of the m-order Bessel function of first kind),
obtaining

Bmn =
1√
π

χ′mn√
χ′2mn −m2

1

a Jm(k′′t,ia)
(B.7)

So

Φmn =
1√
π

Jm(k′t,iρ)

a Jm+1(k′t,ia)
e+jmϕ

Ψmn =
1√
π

χ′mn√
χ′2mn −m2

Jm(k′′t,iρ)

a Jm(k′′t,ia)
e+jmϕ

(B.8)

The objective is to evaluate e ′i(ρ), h ′i(ρ), h ′′i (ρ), e ′′i (ρ). There are some relation-
ships between eigenfunctions, which are recalled here

e ′i(ρ) = −
∇tΦi(ρ)

k′t,i

h ′′i (ρ) = −
∇tΨi(ρ)

k′′t,i

(B.9)

and some impedance conditions between modal eigenfunctions

h ′i(ρ) = ẑ× e ′i(ρ)

e ′′i (ρ) = h ′′(ρ)× ẑ
(B.10)

Finally, the gradient in cylindrical coordinates equals

∇tf =
∂f

∂ρ
ρ̂+

1

ρ

∂f

∂ϕ
ϕ̂ (B.11)

TM modes

e ′i(ρ) = − 1

k′t,i

[
1√
π
k′t,i

J′m(k′t,iρ)

a Jm+1(k′t,ia)
e+jmϕ,

1

ρ

jm√
π

Jm(k′t,iρ)

a Jm+1(k′t,ia)
e+jmϕ

]
=

=

[
− 1√

π

J′m(k′t,iρ)

aJm+1(k′t,ia)
e+jmϕ,

−jm√
πk′t,ia

Jm(k′t,iρ)

ρ Jm+1(k′t,ia)
e+jmϕ

]
(B.12)

so,

h ′i = ẑ× e ′i = ρ̂
(
−e′ϕ

)
− ϕ̂

(
−e′ρ

)
so, finally,

149



B. Appendix of Chapters 3 and 4

{
h′ρ = −e′ϕ
h′ϕ = e′ρ

(B.13)

TE modes

h ′′i (ρ) = − 1

k′′t,i

[
k′′t,i√
π

χ′mn√
χ′2mn −m2

J′m(k′′t,iρ)

a Jm(k′′t,ia)
e+jmϕ,

1

ρ

jm√
π

χ′mn√
χ′2mn −m2

Jm(k′′t,iρ)

a Jm(k′′t,ia)
e+jmϕ

]
=

=

[
− k

′′
t,i√
π

1√
(k′′t,ia)2 −m2

J′m(k′′t,iρ)

Jm(k′′t,ia)
e+jmϕ,

−jm√
π

1√
(k′′t,ia)2 −m2

Jm(k′′t,iρ)

ρ Jm(k′′t,ia)
e+jmϕ

]
(B.14)

Then, since

h ′′i =
[
h′′ρ, h′′ϕ, 0

]
so,

e ′′i = h ′′i × ẑ = ρ̂
(
h′′ϕ
)
− ϕ̂

(
−h′′ρ

)
so, finally, {

e′′ρ = h′′ϕ

e′′ϕ = −h′′ρ
(B.15)

B.3.1 Derivatives of modal eigenfunctions

It may be interesting to evaluate the expression of the derivatives of modal eigen-
functions with respect to ρ; in fact, along ϕ, the derivative operation of each one of
the eigenfunctions is trivial.

Derivatives of TM eigenfunctions

The first component which can be derived along ρ is e′ρ.

∂e′ρ
∂ρ

= − 1

a
√
πJm+1(k′t,ia)

∂

∂ρ
J′m(k′t,iρ) =

= − k′t,i
a
√
πJm+1(k′t,ia)

J′′m(k′t,iρ)

It is possible to find an expression of J′′m(k′t,iρ) using the following trick; recalling
the Bessel equation from [1],

x2J′′m(x) + xJ′m(x) + (x2 −m2)Jm(x) = 0
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this can be re-written isolating the second derivative with respect to the whole
argument at the left-hand member of the equation, obtaining

J′′m(x) = −1

x
J ′m(x)−

(
1− m2

x2

)
Jm(x)

where x = k′t,iρ; “prime” and “second” apexes indicate the first and the second
derivative with respect to the whole argument x respectively. This can be applied
to the previous calculation, obtaining

∂e′ρ
∂ρ

= − k′t,i
a
√
πJm+1(k′t,ia)

[
− 1

k′t,iρ
J′m(k′t,iρ)−

(
1− m2

k′2t,iρ
2

)
Jm(k′t,iρ)

]
This procedure can be applied to other components, when necessary. The fol-

lowing component which has to be differentiated is e′ϕ, as follows

∂e′ϕ
∂ρ

=
jm√

πk′t,iaJm+1(k′t,ia)

[
− 1

ρ2
Jm(k′t,iρ) + k′t,i

J′m(k′t,iρ)

ρ

]
Then, conditions (B.13) can be applied to derivatives too, since the derivation

operator is linear.

Derivatives of TE eigenfunctions

Using the same derivation procedure, it is possible to obtain

∂e′′ϕ
∂ρ

=
k′′t,i

√
π
√

(k′′t,iρ)2 −m2Jm(k′′t,ia)
k′′t,i

[
− 1

k′′t,ia
J′m(k′′t,iρ)−

(
1− m2

k′′2t,iρ
2

)
Jm(k′′t,iρ)

]

∂h′′ϕ
∂ρ

=
jm

√
π
√

(k′′t,ia)2 −m2Jm(k′′t,ia)

[
− 1

ρ2
Jm(k′′t,iρ) +

1

ρ
k′′t,iJ

′
m(k′′t,iρ)

]
Where, for the determination of remaining components, it is possible to use

(B.15) relationships.

Resume of circular waveguide mode functions

Considering the e+jmϕ polarization, modal eigenfunctions are, for TM modes:

e′ρ = − 1√
π

J′m(k′t,iρ)

aJm+1(k′t,ia)
e+jmϕ

e′ϕ =
−jm√
πk′t,ia

Jm(k′t,iρ)

ρ Jm+1(k′t,ia)
e+jmϕ

h′ρ =
jm√
πk′t,ia

Jm(k′t,iρ)

ρ Jm+1(k′t,ia)
e+jmϕ

h′ϕ = − 1√
π

J′m(k′t,iρ)

aJm+1(k′t,ia)
e+jmϕ
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and, for TE modes:

e′′ρ =
−jm√
π

1√
(k′′t,ia)2 −m2

Jm(k′′t,iρ)

ρ Jm(k′′t,ia)
e+jmϕ

e′′ϕ =
k′′t,i√
π

1√
(k′′t,ia)2 −m2

J′m(k′′t,iρ)

Jm(k′′t,ia)
e+jmϕ

h′′ρ = − k
′′
t,i√
π

1√
(k′′t,ia)2 −m2

J′m(k′′t,iρ)

Jm(k′′t,ia)
e+jmϕ

h′′ϕ =
−jm√
π

1√
(k′′t,ia)2 −m2

Jm(k′′t,iρ)

ρ Jm(k′′t,ia)
e+jmϕ

These formulas can be re-written, considering the e−jmϕ polarization, as follows;
for TM modes:

e′ρ = − 1√
π

J′m(k′t,iρ)

aJm+1(k′t,ia)
e−jmϕ

e′ϕ =
jm√
πk′t,ia

Jm(k′t,iρ)

ρ Jm+1(k′t,ia)
e−jmϕ

h′ρ = − jm√
πk′t,ia

Jm(k′t,iρ)

ρ Jm+1(k′t,ia)
e−jmϕ

h′ϕ = − 1√
π

J′m(k′t,iρ)

aJm+1(k′t,ia)
e−jmϕ

and, for TE modes:

e′′ρ =
jm√
π

1√
(k′′t,ia)2 −m2

Jm(k′′t,iρ)

ρ Jm(k′′t,ia)
e−jmϕ

e′′ϕ =
k′′t,i√
π

1√
(k′′t,ia)2 −m2

J′m(k′′t,iρ)

Jm(k′′t,ia)
e−jmϕ

h′′ρ = − k
′′
t,i√
π

1√
(k′′t,ia)2 −m2

J′m(k′′t,iρ)

Jm(k′′t,ia)
e−jmϕ

h′′ϕ =
jm√
π

1√
(k′′t,ia)2 −m2

Jm(k′′t,iρ)

ρ Jm(k′′t,ia)
e−jmϕ

B.4 Verification of boundary conditions

In Section 4.3 we found the boundary condition (4.56) for the Hϕ component of the
electromagnetic field, which must be satisfied in every PEC surface of the structure.
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This condition is here recalled

Hϕ sinϑ+ ρ
∂Hϕ

∂ρ
sinϑ+ ρ

∂Hϕ

∂z
cosϑ =

= Hϕ sinϑ+ ρ
∂Hϕ

∂ν
= 0

Since this condition is applicable to each cylindrical structure, it is possible to
verify its validity on a circular waveguide, using as Hϕ the mode functions of the
circular waveguide. Indeed, they are solutions of Maxwell equations in the cylindrical
domain, therefore they must satisfy this condition.

About the condition Eϕ = 0, the verification is trivial; in fact, it is implicit
in the definition of modal eigenfunctions. Recalling from the previous section the
expressions of modal eigenfunctions, it is necessary to verify

hϕ sinϑ+ ρ
∂hϕ
∂ν

= 0

By considering the fact that this verification is performed on the waveguide
boundary, i.e. for ϑ = 90◦ and ρ = a, the expression becomes

hϕ + ρ
∂hϕ
∂ρ

= 0

where hϕ can be either the TE mode or the TM mode eigenfunction. The two
cases will be verified separately.

B.4.1 TM case

The expression which must be verified is

h′ϕ + ρ
∂h′ϕ
∂ρ

= 0

Considering the expression found in the previous section, remembering that

k′t,i =
χmn
a

where χmn is the n-th zero of the Bessel function of first kind and m-th order,
it is necessary to recall the expressions of h′ϕ and of its derivative, calculated in the
previous section, considering that it must be evaluated on ρ = a, Jm(χmn) = 0. So:

h′ϕ = − 1√
π

J′m(k′t,iρ)

aJm+1(k′t,ia)
e+jmϕ

applying (B.13) to the derivative of e′ρ with respect to ρ evaluated in the previous
section, it is possible to find:

∂h′ϕ
∂ρ

=
∂e′ρ
∂ρ

= − k′t,i
a
√
πJm+1(k′t,ia)

[
− 1

k′t,iρ
J′m(k′t,iρ)−

(
1− m2

k′2t,iρ
2

)
Jm(k′t,iρ)

]
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By combining these two equations, evaluated in ρ = a, it is possible to find:

− 1√
π

J′m(k′t,ia)

aJm+1(k′t,ia)
e+jmϕ + a

k′t,i
a
√
πJm+1(k′t,ia)

1

k′t,ia
J′m(k′t,ia) = 0

So, the boundary condition is verified for TM mode functions of the circular
waveguide.

B.4.2 TE case

For the TE case, it is necessary to verify the validity of

h′′ϕ + ρ
∂h′′ϕ
∂ρ

= 0

From the previous section, it is known that

h′′ϕ =
−jm√
π

1√
(k′′t,ia)2 −m2

Jm(k′′t,iρ)

ρ Jm(k′′t,ia)
e+jmϕ

and

∂h′′ϕ
∂ρ

= − jm
√
π
√

(k′′t,ia)2 −m2Jm(k′′t,ia)

[
− 1

ρ2
Jm(k′′t,iρ) +

1

ρ
k′′t,iJ

′
m(k′′t,iρ)

]

Remembering that

k′′t,i =
χ′mn
a

where χ′mn is the n-th zero of the first derivative of the Bessel function of first
kind and m-th order, evaluating in ρ = a all these expressions, it is possible to find

−jm√
π

1√
(k′′t,ia)2 −m2

Jm(k′′t,ia)

a Jm(k′′t,ia)
+a

−jm
√
π
√

(k′′t,ia)2 −m2Jm(k′′t,ia)

(
− 1

a2
Jm(k′′t,ia)

)
= 0

Therefore, this condition is satisfied also for TE waveguide modes.

B.5 Coefficients for the Galerkin system of cylin-

drical junctions

From (4.61), (4.62), (4.63), (4.64), it is possible to obtain by inspection every coef-
ficient of the system.
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A
(e,e)
βα = jkY

{〈
u(e)
α , v

(e)
β

〉
+

〈
ρ2

m2 − k2ρ2

∂

∂z
u(e)
α ,

∂

∂z
v

(e)
β

〉
+

+

〈
ρ2

m2 − k2ρ2

∂

∂ρ
u(e)
α ,

∂

∂ρ
v

(e)
β

〉
+

〈
ρ

m2 − k2ρ2
u(e)
α ,

∂

∂ρ
v

(e)
β

〉}
(B.16)

A
(e,h)
βα = jm

{〈
ρ

m2 − k2ρ2

∂

∂z
u(h)
α ,

∂

∂ρ
v

(e)
β

〉}
−
〈

ρ

m2 − k2ρ2

∂

∂ρ
u(h)
α ,

∂

∂z
v

(e)
β

〉
−
〈

1

m2 − k2ρ2
u(h)
α ,

∂

∂z
v

(e)
β

〉
(B.17)

A
(h,e)
βα = jm

{〈
ρ

m2 − k2ρ2

∂

∂ρ
u(e)
α ,

∂

∂z
v

(h)
β

〉
+

〈
1

m2 − k2ρ2
u(e)
α ,

∂

∂z
v

(h)
β

〉
+

−
〈

ρ

m2 − k2ρ2

∂

∂z
u(e)
α ,

∂

∂ρ
v

(h)
β

〉}
(B.18)

A
(h,h)
βα = jkZ

{〈
u(h)
α , v

(h)
β

〉
+

〈
ρ2

m2 − k2ρ2

∂

∂z
u(h)
α ,

∂

∂z
v

(h)
β

〉
+

+

〈
ρ2

m2 − k2ρ2

∂

∂ρ
u(h)
α ,

∂

∂ρ
v

(h)
β

〉
+

〈
ρ

m2 − k2ρ2
u(h)
α ,

∂

∂ρ
v

(h)
β

〉}
(B.19)

B
(e,k)
βµ =

√
Y

(k)
∞,µ

〈
h(k)
ρ,µ, v

(e)
β

〉∣∣∣
γ
wg(k)

(B.20)

B
(h,k)
βµ =

√
Z

(k)
∞,µ

〈
e(k)
ρ,µ, v

(h)
β

〉∣∣∣
γ
wg(k)

(B.21)

C(e,k)
να =

〈
u(e)
α e

(k)
ϕ,ν

〉∣∣
γ
wg(k)

(B.22)

C(h,k)
να =

〈
u(h)
α h(k)

ϕ,ν

〉∣∣
γ
wg(k)

(B.23)

D(e,k)
νµ =

√
Z

(k)
∞,µ

〈
e(k)
ϕ,µe

(k)
ϕ,ν

〉∣∣
γ
(k)
wg

(B.24)

D(h,k)
νµ =

√
Y

(k)
∞,µ

〈
h(k)
ϕ,µh

(k)
ϕ,ν

〉∣∣
γ
(k)
wg

(B.25)
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