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Introduction

Satellite telecommunication systems and scientific survey instruments require the de-
sign of high-performance passive waveguide components such as filters, directional
couplers, power dividers, diplexers, orthomode transducers and horn antennas. Ad-
ditionally to the usual specifications on matching and polarization purity, depending
on the specific application, these devices need to comply with very tight constraints.
As an example, nowadays a satellite is used to provide several telecommunication
services; architectures based on the use of a single feed chain working in multiple
bands are preferred to the ones based on multiple chains, in order to reduce mass
and volume of the satellite, and its fabrication costs. Moreover, these devices have
to manage high power levels, leading to the presence of additional issues, such as
the multipaction phenomenon or the presence of spurious intermodulation products.
On the other hand, one of the most challenging tasks in astrophysics is the construc-
tion of a polarization map of the cosmic microwave background radiation (CMBR);
this map would be processed to obtain an angular power spectrum and, ultimately,
cosmological parameters aimed at characterizing the thermal history of the Uni-
verse. However, this procedure is extremely complex, owing to the presence of the
Bremsstrahlung or of the synchrotron radiation, that disturb the measurement. For
this reason, the polarimeters used to measure the CMBR should exhibit an extreme
rejection of the unpolarized background, to improve the signal-to-noise ratio.

In the majority of cases, where a synthesis technique is lacking, the design pro-
cedure is based on using electromagnetic simulators driven by optimization codes.
Although general-purpose simulators can analyze almost every electromagnetic de-
vice with good precision, they are not enough efficient, in terms of computation time,
to be introduced in the optimization loop. For this reason, many efforts are still
invested in electromagnetic modeling, to develop fast and accurate computer-aided
design (CAD) tools.

The first and main part of this Ph.D. thesis is dedicated to the application of a

multi-domain spectral method to the simulation of electromagnetic passive devices.




Introduction

Although spectral methods have been introduced in the mid-1940s, their first rigor-
ous study was carried out by Gottlieb and Orszag in 1977 [1], who summarized the
state of the art in their theory and application. Then, spectral domain decomposi-
tion approaches were introduced to extend spectral methods to complex domains,
generating a class of schemes known as spectral element methods (SEMs) [2]. Among
all the schemes that have been developed, the mortar element method (MEM) is very
interesting: here, local basis functions are defined in each sub-domain; then, they
are glued at the common edges of adjacent patches by enforcing continuity condi-
tions almost everywhere. This allows to use different resolutions in different patches
(i.e. different degrees of the basis functions), and the possibility to hybridize this
numerical method, joining it with other schemes. Owing to their flexibility in the de-
scription of complex geometries, these techniques have been widely applied to models
involving partial differential equations (PDEs), especially in weather modeling, in
computational fluid dynamics and in structural mechanics [3], [4], [5]. Recently,
these methods have been applied to electromagnetic problems in both frequency
and time domains [6], [7], [8]. In [9], the authors have presented a multi-domain
spectral method for the solution of the scalar Helmholtz equation relevant to the

analysis of 2-D rectangular waveguide discontinuities.
The layout of the first part of the thesis is now described.

In Chapter 1, a formulation of scattering problems from electromagnetic passive
structures is introduced. This is based on the decomposition of the scattering prob-
lem into two sub-problems, by applying the equivalence theorem. The electric and
magnetic current densities are used to provide the excitation of the internal prob-
lem, that is described by using a system of PDEs. Then, the numerical procedure
aimed at synthesizing the expansion and test functions is described. In Chapters 2,
3 and 4 the BVPs for 2-D waveguide discontinuities, periodic structures and axisym-
metric devices are derived from Maxwell’s equations. The formulation of Chapter
1 is applied to solve each of these scattering problems. These methods have been
validated with comparisons with in-house simulators and with commercial codes.
This work has been entirely carried out in the Istituto di Elettronica e di Ingegneria

dell’Informazione e delle Telecomunicazioni of the Consiglio Nazionale delle Ricerche

(IEIIT-CNR).
In the second part of the thesis, two different projects are described.

In Chapter 5 the development of a boundary-integral equation method aimed at
analyzing dielectric lens antennas has been described. This work has been carried
out in the Terahertz Sensing Group of the Delft University of Technology. This
project is driven by the necessity of performing a low-frequency characterization of

lens antennas, where physical optics (PO) simulators are not reliable. Nowadays,
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Introduction

the terahertz spectrum is almost unused; indeed, one of the most critical drawbacks
of this frequency range is the absence of an efficient ultra-wide band antenna. Lens
antennas have been already used in terahertz radio-astronomy, and they are among
the best candidates as radiating elements for terabit wireless communication systems
that will be developed in the next years. In this chapter, the formulation of the
integral equations of the feeding slot is developed, as well as the one of the dielectric
lens; then, the two problems are coupled and solved with the method of moments
(MoM). This method has been implemented and validated with comparison with a
commercial code.

In Chapter 6 the design of a cavity-backed Vivaldi antenna is described. This has
been performed in the framework of the Sardinia Array Demonstrator (SAD) project,
aimed at providing a test-bed for novel low-frequency radio telescopes. The antenna
has been designed in cooperation with the IEIIT-CNR and with the Istituto di
Radio Astronomia of the Istituto Nazionale di Astrofisica (IRA-INAF). The design
is based on the improvement of an existing antenna by using physical considerations
to modify its structure. Then, a benchmark of the two antennas based on a far-field
model of the system noise temperature is performed. Finally, a prototype of the
cavity-backed Vivaldi antenna has been characterized by means of a novel pattern

measurement system.
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Chapter 1

Foundations of the mortar element
method applied to electromagnetic

scattering problems

1.1 Introduction

In this chapter the foundations required to properly apply the mortar element
method (MEM) to the analysis of the scattering from electromagnetic passive devices
are provided. Here, the formulation is referred to a generic problem, without spec-
ifying the nature of the domain or of the boundary-value problem (BVP) that has
to be solved. The matrices arisen from the discretized partial differential equations
(PDEs) are intended to be known; therefore, the formulae derived in this chapter
are applied to the structures described in Chapters 2, 3 and 4, where the BVPs are
derived from Maxwell’s equations in different scenarios. The differences among the
methods are mainly related to the calculation of the elements of the matrices that

arise from the weak formulation of the BVP.

The formulation derived in Section 1.2 is based on the application of the equiva-
lence theorem, which is used to separate the initial problem into two sub-problems:
the internal one, which is described as a BVP solved with the MEM; the exter-
nal one, where only homogeneous waveguides are involved. Then, the problems
are coupled, obtaining a boundary-integral equations method, where two situations
are distinguished: in one region the Green’s function is approximated as an eigen-
functions expansion, whereas in the other one it is derived as the solution of the

BVP.

In Section 1.3 the numerical procedure used to synthesize the MEM basis func-

tions used to approximate the solution and to obtain the variational formulation of

5



1. Foundations of the mortar element method applied to electromagnetic scattering problems

the PDE.

1.2 Formulation of the scattering problem

With reference to Fig. 1.1, the equivalence theorem is applied on the two sides of
each surface Zgﬁ) defined on the k-th access port; this leads to the definition of two
couples of electric and magnetic current densities: j(k), M® on the external side of
E&’:;’ and j(k), M®) on its internal side. This is used to divide the original problem
into two sub-problems: in the external one, the currents j(k), M®) give rise to the
fields E(k), ﬁ(k), and to a null field inside the region J); in the internal one, the
currents j(k), M*) give rise to the fields E(k’), H® inside X and to a null field in

the external region.

Y

1
2g 2! 2

Figure 1.1: Original problem, where the electric and magnetic current densities have

been defined after the application of the equivalence theorem.

Given H® and E® the magnetic and electric fields defined on Eéﬁ), the current

densities are defined as:

~

FO — _5® x 75O — —5® » A®
M® = E® x (—a®) = E® x (—a®))

3 = ~ 1.1
FO = 50 x H® = 50 « g® (1.1)

M*) — Bk « k) — EE’“) x A,
where n®) is the unit vector normal to 2((32) pointing towards each external region.
In order to satisfy the continuity of the tangential fields at each access port, which

18
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1.2. Formulation of the scattering problem

A = f®
B =B

the currents introduced in (1.1) are chosen to be equal and opposite:

(1.2)

JO —F0 — _JW®
M® — N® — _M® (13)

These currents are conveniently represented in the modal basis:

N

30 =3 {0l
n=1
(1.4)

N
M®* — Z k)
n=1
where N{¥) is the number of modes used to represent each current density. Similarly,

in the external sub-problem, the field at each access port is represented by means
)

of a modal expansion with N modes for each port:

N

Egk) _ Z ‘A/n(k)egc)
n=1

A (1.5)
I/_\ng) — Z fr(lk)h;k).
n=1

The internal sub-problem is formulated as a BVP solved with the MEM. The posi-
tions of the access ports are chosen by trading-off the attenuation of the evanescent
modes contributions (to reduce the number of modes necessary to represent properly
the field in the external sub-problem) and the number of expansion functions used
to represent the solution of the internal BVP.

All the BVPs studied in this work are formulated starting from the Maxwell’s
equations written in absence of sources, in order to avoid problems in the represen-
tation of the source with a set of basis functions. The effect of the electric and/or
magnetic current densities is accounted for by means of non-homogeneous boundary
conditions, introduced in the line integrals that arise from the application of the
integration by parts applied to the variational formulation of the PDE. Depending

on the problem, these line integrals may contain:

e clectric field components, which are related to magnetic current densities; in
this case, the electric current densities should not be considered, and the cor-
rect formulation is obtained filling the zero-field region of the external sub-

problem with perfect electric conductor (PEC);




1. Foundations of the mortar element method applied to electromagnetic scattering problems

e magnetic field components, which are related to electric current densities; in
this case, the magnetic current densities should not be considered, and the
correct formulation is obtained filling the zero-field region of the external sub-
problem with perfect magnetic conductor (PMC);

e both electric and magnetic field components (vector problems); in this case,

the null field region is filled with an infinitely long waveguide.

These applications of the equivalence theorem are described in the following subsec-

tions, referring to 2-ports devices.

Equivalence theorem - vector problems

Discretized vector boundary-value problem are described by the following matrix
equations:

(A(e’e)c(e))r + (A(e’h)c(h))r = vaf’)*|z(1> -ds + /(2) Hvﬁe)*} @ -ds, r=1..N¢
wg

1 A
'7\<Ng) Twg b

(A(h’e)c(e)>r + (A(h’h)c(h))r - /(1)

Zwg
Ywg

E | o - ds+ /@) L R
Zwg
Ywg

(1.6)
where 7&,’2 is the path along the k-th access port, c¢(® and ¢ are the vectors con-
taining the expansion coefficients of the unknown and the left-hand side matrices
come from the discretization of the differential problem. Focusing on the line in-
tegrals on the right-hand side of the previous equation, for 2-D problems it can be
always written that:

E-ds=E".ds=E®ds

~ ~ 1.7
H-ds=H" . .ds=H® ds. (1)
Then, by inverting (1.1) and recalling (1.3), the following expressions hold:
B0 — MO x 50
- (1.8)

H" =a® x J®).
By recalling (1.4), this leads to:

N N

A o 350 o x 50 = 3 {0
n=0 n=0
N N

B0 ~ 350 a0 x b = 3 60e®)
n=0 n=0




1.2. Formulation of the scattering problem

Therefore, the line integrals of (1.6) are re-written as:

N
17 (K) oy (e)* — (k) (k) y)* qs — — (B&k) (k) — (e)
/ o 0| ds > il / o ds = —(BEVIY), = 1N
Ywg we n=0 wg
N
[ (k) ) (h)* - _ (k) (k) ()* 1g — (k) & (F) — ()
/’y(k> EM v L ds Zovn @ eenUp " ds (BWY v, r=1.N;",
wg n= wg

So, (1.6) are written as:

A©©) ¢ | Aleh) o) — _gED i) | B2
Al ¢l0) 4 A0 o) — _ D) $(1) | B2 ()

where the negative sign is used to keep into account the direction of the integration

path. Then, these equations are grouped as follows:

—i(l)_
Alee)  Aleh) cl© _BD 0 B2 0 v
_ , (1.9)
Ate)  AGD | | 0 _Bk1y) o BG2| |i®
N N—— ~~ g
A c B
v(2)
L"

which is compactly written as:

Ac=Bx.

This equation establishes a relationship between the coefficients equivalent currents
defined on each waveguide port, x, and the expansion coefficients ¢ of the unknowns

of the internal problem. Hence, by solving it with respect to x,

c=Gx=A"'Bx, (1.10)

9



1. Foundations of the mortar element method applied to electromagnetic scattering problems

a representation of the Green’s function of the region ) is obtained. Focusing on
the external problem, the hybrid circuit of Fig. 1.2, valid for each n-th mode, is as-
sociated to the waveguide device, where the electromagnetic problem in each access

waveguide is presented by an equivalent multi-modal circuit. Here, the coefficients
i and o of (1.4) have the circuit interpretation of current and voltage genera-

tors on the modal lines, whereas the coefficients V% and I are the voltages and

currents on the modal lines. The term Zg.f?n is the modal characteristic impedance
and V™" is the modal projection of the incident field at the k-th waveguide port.

The sources 4 and i) are found by projecting the magnetic and electric current

Z0, I " ) /_\ i}ﬁf)_’_ 2 79,
_f=a N\ JaR —
O O | B |

2(2
in

I 1
I I
| |
| |
2%5“"’”+QD e 2800 ) 22, &) e QD—;V,E{“CQ)
I I
| |
I I
L J

2(1)

in

Figure 1.2: Equivalent modal circuit relative to the n-th waveguide mode; Zé’g)n is

the characteristic impedance at the k-th access port; the sources are related to the

inc,k)

equivalent current densities; Vn( is the incidence voltage of the n-th mode.

densities on the waveguide modes':

" (1.11)

Then, the solution of the hybrid equivalent circuit yields the expression of the modal
voltage and current vectors V® and T® in terms of the modal generators i®) and
v(#) and of the modal incidence vector V<) that collect the respective coefficients
[10, Chap. 2]

LAll the problems that have been studied with this technique are self-adjoint, therefore the

modes constitute an orthonormal set.

10



1.2. Formulation of the scattering problem

1 o
Szwim 4 2

v® = yinel) 1
2= 2

70 — yOyen . Loy lyo o

X ; (1.12)
VO — vy Lyoie Lo

g oo 2
7@ — _y@yie | Lo Lye go)

The formulation of the scattering problem is completed by coupling the internal
and external sub-problems by enforcing the continuity conditions of the tangential

electric and the magnetic fields at the access ports (1.2):

Egk) _ EEI@)
A _ [,
These conditions are written in weak form by projecting them on the modal basis:

Ly ~(k
(EL, ey = (B, &)

(HY h{") = (", h).

q
For what concerns the access port terms, it can be noted that, according to (1.5):

(B, ef) =V
(I/‘\ng), h((}k)> _ jgk).

Instead, for what concerns the k-th port of the internal problem, these terms can
be written as:

(B, ) = (1090 + TE9e),

HY b)) = (T, +T"Me®),,
where the expressions of the matrix elements depend on the specific differential
problem. Then, by recalling (1.12) and by grouping the two projections, it can be

found:

[riee )] —z¢ 1 0 o I 0
T T T -Y? o o Y o | [vieD
C = 5 X+ 9
Yo TEh 0 0 z% 1 0 I ||V
—_—
V (inc)
T T o o 1 YY 0 -Y®
T D K
(1.13)

11



1. Foundations of the mortar element method applied to electromagnetic scattering problems

that is:
Tc=Dx+KVi.
Then, by substituting (1.9):

TGx=Dx+ KV,

S0,

TG -D] x =KV,

and, finally:
x=[TG-D] 'KV,

The generalized scattering matrix (GSM) of the device is evaluated from x. The

electromagnetic field at the access ports has an incident and a scattered components

i\/'(l) — V(inc,l) + V(scat,l) — (Zoo
{\[(2) _ V(inc,2) + V(scat,Z) _ (Zoi)) [a(Z) + b

on the other hand, by recalling (1.12),

v —yinen _ Lzoio  Low
2 2
VO _ yne2) %zﬁf} (@) %‘o,@),

Then, the following equations are obtained:

b = _ Lz 4 Lymyigo
g (oo gt foo
b = +%(zg§>>% i® 4 %(Yg?)% v,

These equations are written in matrix form as:

bV X —(z%): xY): o 0
= - X,
b 0 0o (z¥): (YQ):
S—— N ~~ d
b P

but:

12



1.2. Formulation of the scattering problem

(Z(l))% 0 a(l)
x=[TG-D|'"KV® = [TG-D]'K |7 |
0 (Z(Q))§
X 4 a®
Q S——
So:
1 -1
b = §P [TG —D|  KQa;
therefore, the GSM, S, is:
S = %P TG — D] 'KQ. (1.14)

Equivalence theorem - PMC formulation

The case where the discretized BVP is written in form

(ACIC@), = [ Hy©

e

o -ds+ [ Ho®| o -ds, r=1..N  (1.15)
Zwg Zwg

2

is now considered. By recalling (1.7), (1.8) and (1.4) it can be written, just like in

the previous case:

A = _BED 0 | BE2§@)

where:

This can be grouped as:

(1.16)

or, compactly:

Alee) o) — B i

No electric field is present in the right-hand side integrals, therefore the magnetic

current densities do not provide any contribution to (1.15). For this reason, it

13



1. Foundations of the mortar element method applied to electromagnetic scattering problems

is convenient to complete the equivalent external problem by filling the zero-field
region with PMC, to eliminate their radiation contribution in the scattering problem.
Focusing on the external problem, the hybrid multi-modal circuit of Fig. 1.3 is
associated to the waveguide device. The expansion coefficients in this circuit have

the same meaning of the ones of Fig. 1.2. This leads to the equivalent circuit of

28, I m i 22,
—L 1 1

LI

i

oy ime:1) +QD P @ él_‘](l) _J(2)l§ @ D@ QD—'_ngincg)

i

PMC

Figure 1.3: Equivalent modal circuit relative to the n-th waveguide mode. Z ,
is the characteristic impedance at the access port; the sources are related to the

equivalent current densities; Vn(inc) is the incidence voltage of the n-th mode.
Fig. 1.3; its solution is:

VO = gyinel) _ 710

1o — i®
~ o 1.1
V@ = gyinc2) 4 Z(()i) i (L.17)

12 — @
The formulation is completed by enforcing the continuity of the electric field at the
access ports. Indeed, the unknown of the differential problem is an electric field,
whereas the magnetic field is proportional to its derivative; moreover, the magnetic

field continuity is guaranteed by the choice of the electric current density of Fig.
1.1. Since

(B, o) = (1) e)

q @

the continuity equations at the access ports are:

_Z(l) i(l) + 2V(inc,1) _ Tge,e) C(C)
ZO%) ;(2) + 2V(inc,2) _ Tge,e) C(e)

14



1.2. Formulation of the scattering problem

which are grouped as:

Tgeae) _Z(O}D) 0 V(inc,l)
c®) = i+2 :
Tge’e) 0 Zg)) V(inc,2)
—— ~—_——— ——
T(e,e) D(e) V(inc)

or, more compactly:

T(e,e) C(e) — D(e) i 4 2v(inc)'
By inverting (1.16) and substituting it in the last equation, the following expression
is obtained:
T(e,e)(A(e,e))—lB(e)i _ D(e) ; + 2\/—(inc)7

from where:

i = 2[TEI(AC)IBE — DO L y/(ine)
Then, from (1.17), it known that ® = i®) therefore:

—
—_
~

/I\(l) — I(inc,l) + I(scat,l) _ (Y
T(2) _ I(inc,2) + I(scat,2) _ (Y

~—
[SIE (S
r—
Y
—
—
—
I
o
—
—
N2
[—

2% 8
|
wﬁ
>
_I_
o
r

that are compactly written as:

(YD))z 0 a® (YY))z 0 NG
i= -
0 —(YZ):| |a® 0 —(YZ):| |b®
P ple)

Instead, from the solution of the scattering problem:

z8): o al)
i = 2[TCEI(AC)1BE — D]

Q@)
Then:
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1. Foundations of the mortar element method applied to electromagnetic scattering problems

To sum up, the expression of the GSM is:
S =1—2(P©)~! [TC)(AC))"1BE — DO] Q).

Equivalence theorem - PEC formulation

The situation where the discretized BVP is written in form

(AW M)y — /(1) Eo®*| o) - ds+ /(2) Ev®*| o -ds, r=1.N". (1.18)
wg wg
.

wg wg

is now considered. By recalling (1.7), (1.8) and (1.4) it can be written, just like in

the previous case:

ABD ) — O G0 4 B02) @)

where:

This can be grouped as:

v
Ah) () — [_B(h,n B(h,Q)]
| (1.19)
—_——

or, compactly:

Al () — gh)

No magnetic field is present in the right-hand side integrals, therefore the electric
current densities are not present in (1.18). For this reason, it is convenient to
complete the equivalent external problem by filling the zero-field region with PEC,
to eliminate their radiation contribution in the scattering problem.

Focusing on the external problem, the hybrid multi-modal circuit of Fig. 1.4 is
associated to the waveguide device. The quantities in this circuit have the same
meaning of the ones of Fig. 1.2. This leads to the equivalent circuit of Fig. 1.3; its

solution is:
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1.2. Formulation of the scattering problem

2
Zg})?n j\(l) /_\ jx(g) Z(go?n
1 . -

2Vﬂ(inc,1)+<> P QDZ(}) ¢—M(1) —M(2)¢ 137(12)—’GD 7ac) <>+2V7§inc,2)

N

Figure 1.4: Equivalent modal circuit relative to the n-th waveguide mode. Z ,

is the characteristic impedance at the access port; the sources are related to the

equivalent current densities; V. is the incidence voltage of the n-th mode.

A~

v — v®
i\(l) — oy W yine) 3 (1) o (1)
v©® = ¢®@ (1.20)

T = _oy@rvine) | y@) 5O,

The formulation is completed by enforcing the continuity of the magnetic field at
the access ports. Indeed, the unknown of the differential problem is a magnetic field,
whereas the electric field is proportional to its derivative; moreover, the electric field
continuity is guaranteed by the choice of the magnetic current density of Fig. 1.1.

Since

(HP, hWy = (T W)

q

the continuity equations at the access ports are:

o0 o0

oy () y(inel) (1) (1) — T§h7h) c®
—2YQvine?) | y@) 32 — T8 ™)

that are grouped as:

Tgh»h) _Y(gi) 0 _Y(()é) 0 V(inc,l)
c® = v —2 ,
Téh’h) 0 Yg;) 0 Yc(é) V(inc,2)
v/ N TV - ~ TV N TV 4
T (h,h) D) D) V (inc)
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1. Foundations of the mortar element method applied to electromagnetic scattering problems

or, more compactly:

Thh) o) — i) 5 _ 9o h) y/(ine).

and, by inverting (1.19) and substituting it in the last equation,
T(h,h)(A(h,h))*lB(h){, — DMy —op® V(inC)7
from where:

v = —2 [TOR (AR IR0 _ p®)] 1 M) y/(ine).

Then, from (1.20), it known that V) = v(*) therefore:
V(l) _ V(inc,l) + V(scat,l) _ (Z(l

A~

V(2) _ V(inc,2) + V(scat,Z) _ (Z 2)) [a(Z) + b(Q)} ’

which are compactly written as:

z&): o a®l [z o b1
vV = +
0 (z%):] [a® 0 (z%):] [b®

P() P

Instead, from the solution of the scattering problem:

(Zg)))% 0 al
v = —2 [TON(A®N)-1BM _ p®)] “Tpm
0 (z?)z]| |a®
@)
Then:
b a®
_ [I +2(PM)~1 [T (AGD)-IgH _ p®] ! D(h)Q(h)}
b(® a®

So, the expression of the GSM is:

-1

S=_ [I + 2(PM) 1 [ (A G150 _ py®)] D(h)@h)} .
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1.3. Synthesis of the MEM basis functions

1.3 Synthesis of the MEM basis functions

Multi-domain spectral methods in two dimensions are based on the decomposition
of the domain X' of the BVP in a small number of quadrilateral sub-domains (or
patches) £ as exemplified in Fig. 1.5, where five patches are defined. Local basis
functions are defined for each patch in a reference (or parent) domain that can be
transformed into the j-th patch through an analytical blending mapping. The key
point of multi-domain spectral methods is the definition of a set of entire-domain
basis functions starting from the local sets; in the mortar element method, this is
obtained by enforcing the continuity of the basis functions in weak form, according

to the mortar-matching technique.

In this section the procedure aimed at synthesizing numerically the MEM basis
functions is described. Starting from an initial set of local basis functions, this is
augmented with singular weights to account for the presence of sharp edges, where
some field components diverge. Then, several basis recombination procedures are
applied to obtain a set of orthonormal entire-domain basis functions satisfying the

boundary conditions of the problem.

(5)
.-
I I
I |
! : : 1
S N ) B CO R
| : : |
I P
I

(3)

Figure 1.5: Example of domain that can not be mapped into a single reference
domain; the solid lines identify the sides where PEC boundary conditions have to
be enforced; the dashed lines are the access ports; the dotted lines are the common
edges between different patches. In this example, each patch can be mapped to the

parent domain through a bilinear mapping.
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1. Foundations of the mortar element method applied to electromagnetic scattering problems

1.3.1 Synthesis of non-specialized basis functions

The tensor product of the solution of Sturm-Liouville (SL) problems defined in
the parent domain is typically used to synthesize spectral methods basis functions.
Indeed, the spectral approximation of the solution of a differential problem is usually
regarded as a finite expansion of eigenfunctions of a SL problem; in spectral methods,
the most appealing problems are the ones such that the expansion of an infinitely
smooth function in terms of their eigenfunctions guarantees spectral accuracy. In
particular, spectral accuracy is ensured if the SL problem is singular [3]. Among
these issues, particular importance rests with those problems whose eigenfunctions
are algebraic polynomials, because of the efficiency with they can be evaluated and
differentiated numerically. In this work, Chebyshev polynomials have been used as
generating functions; these polynomials are properly defined in the interval [—1, 1].

Therefore, it is possible to define the functions P, (o) as:

Pilo) = Pr(§n) = T T(m),  &nel-11],

where o = (£, n) is the variable of the domain where the basis functions are defined.

The non-specialized basis functions on the spatial domain are defined as:

¢5j)(r) = P.(r(o)), re y,

where 7 = (¢, k) is a double index. The expressions of the mapping r(o) are reported
in the Appendix A for two cases: the bilinear case, which is used to map the reference
domain to a generic quadrilateral with straight edges, and the analytical blending

mapping, based on the Gordon-Hall formula.

1.3.2 Introduction of singular weights

One of the most appealing properties of spectral methods is their exponential con-
vergence; however, this can be deteriorated by the presence of sharp edges, since
they introduce a singular behavior in some field components. To restore the con-
vergence rate, the set of basis functions can be augmented with weights that model
the asymptotic behavior of the electromagnetic field in the proximity of each corner
[11].

The spatial domain X' is mapped into the companion domain, which is obtained
rectifying each curved edge with the straight line tangent at the corner. In the
case of structures composed only of straight lines, the two domains are coincident.
Let x = F>(<j)(a') be the mapping from the o domain to the companion domain;

according to Fig. 1.6, let p. and ¥, be the distance and the angular coordinates of
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1.3. Synthesis of the MEM basis functions

a cylindrical system centered in the e-th corner; let . be the angular dimension of

the corner; then, the following expressions have been derived in Appendix A:

Figure 1.6: Example of domain where the companion domain is not coincident to
the natural domain. The dashed lines identify the sides used to define the corner;
the circles identify the sharp edges that require to be described with proper basis
functions; ¢, is the angle of the edge; p., V. are the radial and azimuthal coordinates

defined on the e-th corner.

e the i-th singular function aimed at describing the electric field component

parallel to the edge is:

P

P = e sin <’?ﬁe> . opi=1,2.. (1.21)

e the i-th singular function aimed at describing the magnetic field component

parallel to the edge is:

Py .
M = ple cos (2%196), pi=1,2.. (1.22)

Now the set, of non-specialized basis functions {¢¥’(r)} is augmented by using (1.21)
or (1.22) as weights, defining:

@) = [ v (x)69)(r).

p=np1

The non-specialized functions f )(r) are the union of the sets of functions oY (1)

multiplied times the singular weighting functions v, for every considered p; in other
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1. Foundations of the mortar element method applied to electromagnetic scattering problems

words, {5 (1)} = {6 (1)}, {v5 ()oY (1)}, (v (x)6¥ (x)}, ..} Usually, p =
{0,1}. The resulting multi-index « is three-dimensional: « = (¢, &, p), since it can

assume, for each p, the values of the index .

1.3.3 Essential boundary conditions and orthonormalization

It is necessary to distinguish two classes of boundary conditions: essential and nat-
ural [12].

e Essential boundary conditions have to be enforced explicitly; this is done by
synthesizing basis functions that individually satisfy these conditions. Dirich-

let boundary conditions are an example of essential boundary conditions.

e Natural boundary conditions can be either enforced explicitly just like essential
conditions, or by modifying the weak formulation of the problem. Neumann
or Robin boundary conditions can be enforced naturally. This is commonly
done through the boundary contribution that arise from the application of

integration by parts in the weak formulation of the problem.

The naif application of the essential boundary condition can be applied in both
cases, but it may damage the convergence of the method, since it would produce
basis functions that are too specialized. This is shown, with an example, in Section
2.3.

—
! .
|

|

|

L4 () 2
|

|

|

L

|

Figure 1.7: Detail of Fig. 1.5 where the patch (1) is reported. The numbers not
included in parentheses identify the edges of the patch. The solid line identify the
PEC boundary conditions; the dashed line identifies an access port; the dotted line

identifies an edge where continuity conditions have to be enforced.

The enforcement of natural boundary conditions regards the formulation of the

differential problem, and therefore it is discussed in the next chapters. So, if no
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1.3. Synthesis of the MEM basis functions

essential boundary condition should be enforced, it is possible to skip these steps,

by defining:

o§(r) = 1§ w).

Otherwise, let v be the boundary of the domain X, and let ypc) be the union of
the segments of v where Dirichlet boundary conditions should be enforced. Then,
let 'y((é)c) be the part of boundary of the j-th patch where the condition is required.
In Fig. 1.7 an example of patch is reported; for this example, 7((%)0) consists of the
edges 1 and 3.

In this section a set of functions {géj)(r)} that satisfy a Dirichlet boundary
condition on 7(%)(3) is defined by applying a basis recombination approach to the set
of functions {f&(r)}. This means that cach §-th function is defined as:

95 (r) = D PP ().
where {yﬁf p )} are chosen in such a way that:

gy r)=0, reqle. VB

This condition is required in weak form, by projecting this equation on a set of test

function {v,(r)} defined on 7(%)(3):

(g9 (x),v,(x)) =0, VB, v;

then, by substituting the previous expression:

D yI P (x),v(r)) =0, VB,
Let the matrix element LS,Q be defined as:

LY = (fD(1), v,(r)) = . 9y ds,

Y(Bo)

then, the previous condition are written in matrix form as:

LYV = 0,

where Y is the matrix having as columns the vectors yU?): the -th vector cor-

responds to the function géj )(r). In other words, since the previous system is homo-

geneous, the matrix Y is built using as columns the elements of the kernel of the
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1. Foundations of the mortar element method applied to electromagnetic scattering problems

matrix L. An orthonormal basis of the kernel of a matrix can be found by means
of the singular value decomposition (SVD); by considering the SVD of L\:

LY — yUe gle) (V(J}g))H'

The basis of the kernel of LU) is given by the columns of the matrix VU#® cor-
responding to the null singular values, ¢.e., below a threshold £,. The number of
columns of G equals the dimension of the set { 79 (r)}, whereas its number of rows
equals the dimension of {gg )(r)}. So, by defining two column vectors of functions

f0)(r) and gl (r), it is possible to relate them as:
g(j)(r) — (G(j))Tf(j)(r)‘

Orthonormalization

The functions belonging to the set {gg)(r)} are not linearly independent, due to
the introduction of the effect of the sharp edges. Indeed, far from the edges the
weighted functions become almost proportional to the non-weighted ones, leading
to the generation of redundancies in the field representation. For this reason, a basis
recombination approach aimed at providing local sets of orthonormal functions is

applied:

(e) = HY g (@),
B
The procedure aimed at obtaining the coefficients Hg) is now described. Let (M)g, 3,

be the generic element of the Gram matrix of the functions {gg )(r)}:

(M) a5, = (95 ()5 00) = [ w0l ).
J

The coefficients Hfg) are found as a basis of the range of the matrix M: this can

be evaluated with the SVD:

M) — ybh) gh) (V(j:h))H.

Indeed, the columns of the matrix UUP corresponding to the most significant singu-
lar values of SU™) | j.e.. above a threshold e},, are an orthonormal basis of the range of
the matrix MY, The length of each column of U equals the number of functions
belonging to {g[gj )(r)}. The t-th column of the matrix HY) gives the recombination
coefficients used to obtain the function hgj )(r). Therefore, it is possible to find the

vector of functions h'¥)(r) as:
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1.3. Synthesis of the MEM basis functions

1.3.4 Continuity conditions

In the previous section a set of orthonormal boundary-adapted functions {hgj )(r)}
has been defined in each j-th patch. In this section, a procedure for the synthesis
of entire-domain basis functions {u.(r)} based on the mortar-matching method is
described. Firstly, a unique set of basis functions is defined as the union of the N
sets and by forcing their continuity. Let {h;(r)} be the union of the sets of basis

functions in different patches:

Np

)} = {n )}

j=1
Here, the multi-index [ = (¢,j), where t another multi-index, is used to indicate

the elements of the new set. Then, the following basis recombination approach is

applied to obtain the entire-domain basis functions:

u.(r) = Z 4y ().

The functions u.(r) have to be continuous on the entire domain X; this means that,
given ¢ and j two adjacent patches and v;; the common edge between them, they

have to satisfy the following condition:

Uc ,7(7}) = ucl,yg) )

i
where the left-hand side and the right-hand side contain the restrictions of the basis
functions u. on the patches ¢ and j. A set of 1-D functions , is defined on 7;;.
The continuity condition is cast in weak form by using u, as test functions; for this
reason, j, are usually called “mortar functions”, since they act as mortar between

bricks, to join them:

/ [uc 'y@ — uc|'7‘(j)i| My ds = 0, Vu.
Yij k) (%]

J

The definition of the basis functions . is then substituted:

Zdl(c)/ [hz(r)|7§;> - hz(r)|vg>] pyds =0, V.

1 Yij

A matrix N is now defined:
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1. Foundations of the mortar element method applied to electromagnetic scattering problems

N = [ [y = mielp] s

Then, the problem is reduced to a homogeneous algebraic system:

NO =0,

where O is the matrix built using the vectors d(© as columns. Just like in the
essential boundary conditions case, the columns of D are the elements of a basis of
the kernel of N, which is evaluated with the SVD:

N = UW W (v

where O is built with the columns of V corresponding to the singular values that
are smaller than a threshold €,. Finally, given h(r) the vector of functions h;(r),

the vector u(r) of entire-domain continuous functions u.(r) is obtained:

u(r) = O"h(r).

These are the functions used to expand the unknown of the differential problem,

synthesized according to the mortar element method.

1.4 Conclusions

In this chapter the foundations of the application of the mortar element method to
electromagnetic guided problems have been produced. In the first section the formu-
lation of three different scattering problems has been described; these formulations
will be applied to the boundary-value problems described in the next chapters, rela-
tively to different structures. In the last section the procedure aimed at synthesizing

the MEM expansion and test functions is described.
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Chapter

Mortar element analysis of 2-D waveguide

discontinuities

2.1 Introduction

Although a general waveguide device is three-dimensional, a significant sub-class is
given by two-dimensional waveguide junctions, where the dimension of the problem
is reduced by 1 by exploiting the translational symmetry of the components. There
are two main categories of these components: E-plane and H-plane ones; two exam-
ples of step waveguide junctions are reported in Fig. 2.1. Since both discontinuities
lie on the yz plane, the categorization of E-plane and H-plane devices depends on
the incident field: assuming to excite the structure with the fundamental mode of
its access waveguide, in the F-plane structure the electric field is polarized along y
(TE;9 mode), whereas in the H-plane one the magnetic field is polarized along y

(TE¢; mode). A multi-domain spectral method aimed at analyzing homogeneous

YA YA

Figure 2.1: Left: sketch of a E-plane waveguide step. Right: sketch of a H-plane

waveguide step.
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2. Mortar element analysis of 2-D waveguide discontinuities

E-plane and H-plane junctions has been recently developed [9]. Here, the sym-
metry is exploited by transversalizing the equations with respect to the invariance
direction x. Then, the incident fields are represented as a LSE®) and LSM®) mode
expansions. The unknown fields in the device are described using entire-domain ba-
sis functions that keep into account the boundary conditions and the field behavior

in the proximity of sharp corners.

In Section 2.2 the formulation described in [9] is revised and extended to the case
of non-homogeneous dielectrics. Since in the H-plane case the electromagnetic field
is constant along x, no hybrid modes are excited; on the other hand, E-plane devices
with inhomogeneous dielectric are described by a vector differential problem, since
both the electric and magnetic field components along the invariance direction are
present. In Section 2.3 the effect of the enforcement of the boundary conditions on

the convergence of the method is discussed.

2.2 Theory

2.2.1 Description of the reference scattering problem

The present method is applicable to structures that exhibit translational symmetry
and it is used to compute the GSM of the device. For the sake of clarity and without
any loss of generality the method is here described by considering the reference
structure shown in Fig. 2.2, consisting of a waveguide stub. The vertical dashed
lines identify the separation section ngl) between the internal (gray) and external
sub-problems, where the access ports are defined. The incident field is given by a
combination of LSE® (E-plane devices) or LSM®) modes (H-plane devices); the =
dependence of the field components is maintained in each point of X', owing to the

translational symmetry of the structure; this is:

H(z,y,2) = HEI) cos <E$> + X H,sin <m$>
a a

B9 =87 (5] 45 s (25)
a a

where a is the dimension of the waveguide device along x. Let k, be defined as:

mm
gy 2 T

a
The BVP defined in Y is derived from the curl Maxwell’s equations in absence of

sources that keep into account this dependence, which are
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7Y
A E
. Q(l)
F (inc) ) 1
T Yy 1 :
....... 1
o

Figure 2.2: Section in the zy plane of an asymmetric waveguide stub. The gray

internal region Y is divided in four patches separated by the dashed lines to apply

(k)

the multi-domain strategy. Each access port is located at z = zwg and its height is

bk,
OE, OE, .
——=—jkZH,
dy 0z )
oF
L k. E.,=—-jkZH
0z ) Y
oF
kB, — —- = —jkZH,
Y 8y J
0H, O0H, .
— =jkYE,
oy 0z )
0H,
— t kH, =jkYE
0z + ) v
OH,
—k,H, — —= =jkYE.,
Yy ay J
where:
_ K _
Z = - k = w\/ue.

(2.1)
(2.2)
(2.3)
(2.4)
(2.5)

(2.6)

The electromagnetic problem is now conveniently formulated in terms of the E,

and H, components. Hence, by manipulating (2.2), (2.3), (2.5), (2.6), the following

equations are obtained:
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2. Mortar element analysis of 2-D waveguide discontinuities

By = ! e _—kxaa% - jkzagf (2.7)
E= o ! E :jk;Zaale - kxaix: (2.8)
H, = 7 i = :jkYaix + kza(gx: (2.9)
H. = i = :kxa(,i‘” —jkYaany: (2.10)

The derivation of these expressions is reported in Appendix B.3. The remaining
components of the Maxwell’s curl equations (2.1) and (2.4) are used to formulate the
internal BVP; these equations are supplemented with the PEC boundary conditions
on the segment yprc C 7, being v the boundary of X:

{Ex:()a (2,9) € YpEC (2.11)

Egm) 5= 07 (Za y) € YPEC,

where Eiw) is the electric field in the (z,y) plane and § is the tangent unit vector
on 7. The unknowns F, and H, are then represented as linear combinations of

entire-domain basis functions defined on .

N(e)

fun

E, = Z C£6)U£E)(za y) (212)
c=1

N

Ho= 3 cul( ). 213
c=1

The basis functions u((;h) belong to the space VI of continuous functions with in-
tegrable derivatives, whereas ul® belong to V© < VM including only functions
vanishing on vpgc. Indeed, the Dirichlet condition on E, is essential, and it has
to be included in the basis functions. On the contrary, the condition on ng) is
natural and it may be enforced in the weak formulation without further specializing
the functions used to represent H, [12, Chap. 3]. These functions are synthesized

numerically, as described in Section 1.3.

2.2.2 Formulation of the internal BVP: FE-plane devices

In the generic F-plane device case, where inhomogeneous dielectrics may be present,

it is convenient to represent the field at the access ports in terms of TE, and TM,
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2.2. Theory

modes in place of LSE® and LSM® ones, since the latter ones are not orthogonal.
The = components of the Maxwell’s curl equations (2.1) and (2.4) are cast in weak
form by projecting them onto a set of functions o™ = ™ and o' = 4 respec-
tively; then, the Stokes theorem is applied to perform integration by parts, leading

to:

[ g Hut* ]
b 5 dy 0z v

(2.14)
e (@]
_jky// By dzdx_// w2 O dzdx:j{(H§$>U§e>*).ds.
by | dy 0z | gl
(2.15)

The proper decomposition approach is described in Fig. 2.3, where the equivalence

Ty
BN oy I
: 4 o7 @' ;2
e 1 -J I‘:l
// |
|
I
|
1

. 1 (1) 3
E(lnc) ( )T ¢ J | ) :
I —M® M®
ol | © sl MR
2
A2 o
= (1) =(2)
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Figure 2.3: Hybrid equivalent multi-modal circuit of the waveguide structure shown
in Fig. 2.2, where only one equivalent modal circuit is shown for each access waveg-

uide.

theorem is applied by introducing a couple of oppositely directed electric and mag-
netic current densities on the two sides of Eeq The vpgc contributions to the line

© are vanishing; on the other

integrals of (2.15) are zero since the test functions vy
hand, the ypgc contributions to the line integrals of (2.14) are set to zero to enforce
the second condition of (2.11) as a natural boundary condition; therefore, the only

non-vanishing contributions to the line integrals come from the equivalent currents
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2. Mortar element analysis of 2-D waveguide discontinuities

defined ont he access ports. Noting that, at the access ports, EE‘T) -ds = Eék) -ds

and ng) -ds = IZIEk) - ds, according to Section 1.2:

Nm b1 p(2)
FEE as= =300 [ g z T
K n=1 Z:Z\(ng) zZ= z\(,?g)
m b1 p(2)
j{(ng)Uﬁh)*) .ds = — Z f)ﬁl) / eé{%vﬁh)* dy + Z / eé?%vTh dy.
v n=1 0 e (D) L2
wg wg
The following matrix elements are then defined
p(k)
(B(e’k)>rn = / hé’fnvf«e)’k dy
0 o (R)
wg
) (2.16)
e A
0 2=2F)
wg

Then, by substituting (2.7) +

lowing system of matrix equations is obtained:

Alee)g(e) + Aleh) () — B(eﬂ)i(
A(hve)c(e) _|_ A(hvh)c(h) — B(h,2)‘°’(2)
where:
(o) _ _ _IKY poa o
A T2 k2 k2 [(k kz
k
(e,h) z (e)
AT = k2
k
(he) _ _ z (h)
A k2 — k2
(h,h) ij 2 2 (h)
A 2 12 [(k: kI)M
and

(2.9) and (2.12)-(2.13) in

(2.14) and (2.15), the fol-

2) _ glehi)

_ gm0 (2.17)

Y
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2.2. Theory

M(e) / / (e) (e dzdz
[oul® 0vl*  ul 0ul*
K(e) = // c r c r dzd
) | Oy Oy + 0z 0z s
[ 5, 0) 5 ()« (h) o (e)*
L)Y, = / / ue” dup™ Jue oy 4o da
| Oy 0z 0z Oy
@), = // uMo™* dz dz
b

[ 5, (1) 5 ()« (h) g (h)*
(h))rc = // auc avr + auc avr dzdzx
oo dy Oy 0z 0z

[ o, (e) o (h)«
™), = / / OQue” dvr ous v dzdx.
s | Oy 0z 0z 0Oy

2.2.3 Formulation of the internal BVP: homogeneous F-

plane devices

In the case of E-plane devices filled with homogeneous dielectric, F, = 0 in every
point of the structure, as it is proved in [13]. In this case, the incident field is a
LSngl) mode, no LSM® mode is coupled, and the BVP describing these components
is scalar. This is obtained by considering (2.1), (2.7) and (2.8) with E, = 0:

oF 8E
z =—jkZH,
ay o0z
_ —jkZ 0H,
Y k2 — k2 0z
jk:Z 0H,
E

TR k2 Oy

The first equation is cast in weak form by projecting it on the test functions v,(nh);

then, integration by parts is applied to the resulting equation, leading to:

2 [[ Haopraza- [[ |B.

Since no magnetic field excitation is appearing in the line integrals, the proper

— By 0z

(h)« ()=
8 dur ] dzdx = %(ng)vﬁh)*) - ds.

~

version of the equivalence theorem is the one where PEC is used to fill the zero-
field regions, to eliminate the contributions of the electric current densities. This

is described in Fig. 2.4, where the equivalent problems are reported together with
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2. Mortar element analysis of 2-D waveguide discontinuities

their hybrid circuits. The following matrix equation is obtained by applying the

same considerations of the previous case:

s B

z 4 7

g IO} 30 Ly 3 )
Tl £ ol A
G 2
PEC
zQ, 1w + 20 2002 4 f(z; 7(2)

+
inc . A‘/(2)
2“5 1) Ln(l) m

Q m 00, m
LN 6 |1 ]

Figure 2.4: Hybrid equivalent multi-modal circuit of the waveguide structure shown
in Fig. 2.2, where only one equivalent modal circuit is shown for each access waveg-

uide.

AlD) 1) — Bh25@) _ By

where the line integrals are defined as in (2.16). The matrix on the left-hand side is
defined as:

AGD) iz {Mm) _ ﬁwm} |

where

M® = / / uMv™* dz da
b

(h) o (h)* (h) o (h)*
Kb — / / Jue ’ Ovy n Jue’ Ovy & da
s | Oy 0Oy 0z 0z

2.2.4 Formulation of the internal BVP: H-plane devices

In the H-plane device case, the incident field is a LSM(()fL) mode, meaning that the

electromagnetic field is constant along the invariance direction of the structure. For
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2.2. Theory

this reason, even if the device has non-homogeneous dielectric, no LSEY), mode is
coupled, and the BVP describing these components is scalar. This is obtained by
considering (2.4), (2.9) and (2.10) with &, = 0:

ot 0y,
1 0F,
v JkZ 0z
1 0F,
? JkZ oy

The first equation is cast in weak form by projecting it on the test functions v sat-

isfying the PEC boundary conditions on ~pgc; then, integration by parts is applied

to the resulting equation, leading to:

a (e)= av(e)*
—jkY E 09" dz da — — H,~——| dzdz = ¢ (H™") . ds.
Yy az : r

Since no electric field excitation is appearing in the line integrals, the proper version

of the equivalence theorem is the one where perfect magnetic conductor (PMC) is
used to fill the zero-field regions, to eliminate the contributions of the magnetic
current densities. This is described in Fig. 2.5, where the equivalent problems
are reported together with their hybrid circuits. The following matrix equation is

obtained by applying the same considerations of the previous case:

A9 @) = B2 _ glej)

Y

where the line integrals are defined as in (2.16). The matrix on the left-hand side is
defined as:

e,e : 1 e
Al = Ly [M( e _ EK( )}

where

// (e)* dzdz
(e) (e)* au(e) Py e)*
< 2 | dzdz.
//[ oy Oy * 0z 0Oz =G
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2. Mortar element analysis of 2-D waveguide discontinuities
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Figure 2.5: Hybrid equivalent multi-modal circuit of the waveguide structure shown
in Fig. 2.2, where only one equivalent modal circuit is shown for each access waveg-
uide.

2.3 Results - convergence analysis

This method has been applied to the analysis and design of several E-plane and H-
plane devices presented in [9] and not reported here. In this section a convergence
study of the method with respect to the number of expansion and test functions
used to represent the solution of the internal problem is presented for two different
implementations of the method. As discussed in the Section 2.2, it is not mandatory
to specialize the basis functions ugh) used to expand H,, since the related boundary
condition can be enforced naturally, acting on the line integrals that arise from the
integration by parts. However, in the original implementation of the method, the

procedure described in Appendix A.1 was used to enforce the condition

ou,
on

TPEC

=0,

being n the normal direction to . A convergence study is performed on the waveg-
uide stub reported in Fig. 2.6, where w = 6 mm, Ry = Ry = 9.525 mm, Ly = L, =4
mm, h = 5 mm, to understand which is the most convenient procedure to be applied

in these situations. It is remarked that this problem affects only E-plane devices,
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w
- -
- _
h
Ll L2
< — <
A : : A
1 |
| |
p(1) I I p(2)
Yy ! |
! I
7 I . Y
T z
Figure 2.6: Sketch of a waveguide stub
2-norm error on the fundamental mode reflection coefficient
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Figure 2.7: Convergence study applied to the waveguide stub of Fig. 2.6.

since H, = 0 in H-plane discontinuities. In Fig. 2.7 it is observed that, for poly-
nomial basis functions, the convergence of the method is much slower in the case of
explicitly enforced boundary conditions. On the other hand, if the set of polynomial
basis functions is augmented with the asymptotic behaviors of the electromagnetic
field in the proximity of sharp edges, the convergence properties are independent of
the method of enforcing the boundary condition. This is related to the fact that,
if each basis function satisfies the Neumann boundary condition, it isn’t capable of

properly representing a divergent field behavior; on the other hand, this is restored
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2. Mortar element analysis of 2-D waveguide discontinuities

by introducing the singular weight.
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Chapter

Mortar element analysis of 2-D periodic

structures

3.1 Introduction

Periodic structures are widely used as models in optics and electromagnetics. For
this reason, in recent years many efforts have been made aiming at developing fast
and accurate electromagnetic simulators for several problems that involve periodic-
ity. The characterization of reflection gratings has been performed by introducing
problem-matched basis functions used to approximate the solution of an integral
equation with the method of moments (MoM) [14]. The frequency response of
photonic crystals has been evaluated with a hybrid finite element method (FEM)
exploiting a Floquet mode representation of the electromagnetic field [15] [16]. The
two-dimensional scattering of a plane wave from a periodic array of composite di-
electric cylinders has been studied with the MoM accelerated by means of a multi-
grid method [17], or with the aggregate T-matrix method for cylindrical structures
[18]. Frequency-selective surfaces have been analyzed by determining numerically
the Green’s function of a screen perforated by multiply connected apertures [19].
Dielectric frequency-selective surfaces have been analyzed using a vectorial modal
method [20]. The boundary integral-resonant mode expansion method (BI-RME)
has been used to study electromagnetic band-gap structures [21], [22]. The finite-
difference time-domain method (FDTD) has been used to analyze the guided-wave
characteristics of substrate integrated nonradiative dielectric waveguides [23].

In this chapter the development of a simulator of 2-D dielectric periodic struc-
tures based on the MEM is described. This work has been formerly developed for
the E-polarization and H-polarization cases [24], then for the skew incidence case

[25], [26]. The domain decomposition strategy is based on defining patches filled
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3. Mortar element analysis of 2-D periodic structures

with homogeneous dielectric; by this way, a proper representation of the electro-
magnetic field in the internal problem can be obtained using a small number of
basis functions. The flexibility in the description of the geometry is exploited in or-
der to analyze structures with rounded corners; by this way, it is possible to model
the non-idealities caused by manufacturing processes. The weak formulation of the
internal BVP is derived starting from Maxwell’s equations; this leads to the defini-
tion of the matrices used in Chapter 1. Then, a validation of the numerical scheme
is performed by comparison with a MoM code and with the CST Microwave Studio
code (CST-MS) [27].

3.2 Theory

3.2.1 Description of the reference scattering problem

The present technique can be applied to the analysis of 2-D periodic structures

excited by a plane wave with arbitrary incidence. This is used to compute the

X
R
________________ U z
PSW

:Eeq(l) Eeq(z):

e )
L :

Zwgh) PSW Zwg(2)

Figure 3.1: Left: sketch of the geometry of the structure; right: unit cell. The
horizontal solid lines are phase-shift walls PSW with phase shift ¢ = £"“a; the
vertical dashed lines define the access ports; the parameter a is the period; Lq and
Wy are the length and width of the dielectric rod respectively; R is the radius of

curvature of the rounded corners.

generalized scattering matrix in the Floquet modes basis. The geometry sketched
in Fig. 3.1 is used as reference for the description of the formulation; the structure
consists of a periodic array of infinitely long dielectric rods with refractive index
n = /&, surrounded by vacuum. The effect of dielectric losses can be accounted for,
therefore the dielectric constant ¢, is intended to be a complex number. The array

direction is x and each rod is placed along y. The period of the structure is a, each
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3.2. Theory

V@
2V,,§“°72QD

Figure 3.2: Top: definition of the two sub-problems; bottom: equivalent multi-

modal circuit of the external sub-problem, where only the n-th mode contribution

is shown.

bar has length L4, width Wy and the corners are rounded with radius of curvature

R. The wavevector of the incident plane wave is

1nc

= ko (sin ) cos ¢, sin 9 sin @, cos ) =
inc) 7.(inc) 7.(inc)
= (k") k) k),
where kq is the free-space wave number. The unit cell consists of a phase-shift wall

waveguide with a dielectric obstacle; the pseudo-periodicity boundary conditions for

the electric and magnetic fields E and H are
E(z,a)
H(z,a)
where ¢ = kS”C)a is the phase shift originated by the incident wave and indicated in

Fig. 3.1.

The decomposition of the problem according to Section 1.2 and the relative modal

E(z,0) e
H(z,0)e™,

circuit are sketched in Fig. 3.2, where the access ports are located at z = zv(vkg); the
current densities and the fields on the surfaces ngl) where the equivalence theorem is
applied are represented using a Floquet modes expansion, and the formulation of the
external problem is completed by matching the PSW waveguides. The expressions

of the Floquet modes are reported in Appendix C.1.

3.2.2 Formulation of the internal boundary-value problem

The boundary-value problem defined in the internal region Y is derived from the

Maxwell’s curl equations, written in cartesian coordinates and in absence of sources.
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3. Mortar element analysis of 2-D periodic structures

Since the structure is invariant with respect to y, each field component has the same
e %% dependence of the incident field; therefore, the y derivatives in the Maxwell’s

equations are replaced with “—jk,”:

kB~ Y = ik, (3.1)

aaE; - i — ikZH, (3.2)

%ﬂ ik, B, = —jkZH. (3.3)

ik~ O kY B, (3.4)

a;f _ aa% _WYE, (3.5)

a(f _kYE., (3.6)

where:
k= kon 7= %
g n

Hence, it is possible to use F,, H, as Hertz potentials from which the remaining

components are obtained, by manipulating (3.1), (3.3), (3.4), (3.6):

j 8Hy>
E, = — (k —kZ (3.7)
k2 — k2
j OH
B.= -0 (k:y Yy kZ &ch) (3.8)
Yy
j 0Ey)
H, =— (k Yy kY (3.9)
K2 k2 \
] OH,
H.o=—5 = (k: 5 k2 o ) (3.10)

The derivation of these expressions is reported in Appendix C.3.
If the plane wave is incident in the zz plane (i.e., ¢ = 0), the problem splits up
into the independent E-polarization and H-polarization scalar ones. The unknowns

of the problem are expanded as

Ny
B, =Y Oz, )

c=1

. (3.11)
Hy >~ Mz, ),

c=1
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3.2. Theory

VgD l D a T Vg2
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Figure 3.3: Sketch of the internal sub-problem, where the boundary contributions

are emphasized.

where {u.(z,2)} belong to the function space V' of continuous functions with inte-

grable derivatives satisfying the pseudo-periodicity condition
ue(z,a) = u.(2,00e?  2€[0,L] Ve=1..N;. (3.12)

The synthesis of these functions is performed according to the MEM, as described
in Section 1.3 and in Appendix C.2. A set of local basis functions is defined on the
parent domain for each patch, and then these functions are specialized to satisfy the
pseudo-periodicity essential boundary conditions.

Equations (3.7) + (3.10) are obtained from the z and z components of the curl
Maxwell’s equations; the y components (3.2) and (3.5) are cast in weak form by
projecting them onto a set of test functions v, = wu,, chosen accordingly to the

Galerkin version of the method of weighted residuals:

. . B OE, OE,
—Jl{;Z//EHyvrdde—//E [ 5, o

_ . B OH, OH.| .,

J//ZkYEyvrdde—//E [ P o ] vy dzdz.

Then, integration by parts by means of Stokes theorem is performed, and the fol-

} vy drdz

lowing equations are obtained:

j// kY E, d:z:dz+// [Hz% - Hza“”} dz dz :f(Hﬁy)v;f) ds  (3.13)
by by 0z ox ~
: * 87}: 81}: (y),
—jkZ Hyvr dovdz + E,— —FE.—|dedz= ¢ (Ev))-ds, (3.14)
by b 0z ox 5

where 7 = Yiop U Ybottom U ’yv(vlg) U fyv(VQg) is the boundary of X and E,Ey) and Hgy) are

the electric and magnetic fields transverse to y, as shown in Fig. 3.3. The top

and bottom contributions to the right-hand side integrals are set equal to zero to
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3. Mortar element analysis of 2-D periodic structures

enforce the pseudo-periodicity of F,, E., H,, H, as natural boundary conditions
[12, Chap. 3]. Working on the right-hand side of (3.13), the following expressions

are written:

]{<H(y) o) - ds_/%

+ HU| <1)dZL‘—

.

/Hv|x0dz+/Hv| dl‘—/Hlea
_/ Hxv:lz_z(l) d.I,
0 e

where the signs are chosen accordingly to the path orientation. The pseudo-periodicity

ottom top

* * *
HZUT ’x:O dZ + /(2) HIEUT' |Z:Z‘SVZg) dx + / HZUT‘ ‘CE:CL dZ+
Ywg Y

boundary condition on H, is:

H|,_,= H.|,_,e".

This condition is written in weak form, by testing it on 1-D basis functions f,(z):

/H|H dz—/ HLl, g £7(2)e7 dz.

Since ¢ is independent of z, it is written:

/H|H +J¢dz—/ HLl, o [2(2)d
/H|Hfr e ¥ /H|Mf 2)ds

Then, according to (3.12):

which is:

v, (2, x)’x:() = fr(2)

Or(2, )]y = fr(2)e 7.

Indeed, the two restrictions are equal, less than the pseudo-periodicity condition.

Therefore, the equation is written as:

L L
* _ *
/ H.ovy|,_, dz= / H.vy|,_, dz
0 0
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3.2. Theory

For this reason, these two integrals should be removed from the formulation, to sat-
isfy in a natural way the pseudo-periodicity condition on H,. The same calculations
hold for E,. Then, since both the ¢ and the z components of the electromagnetic
field satisfy the pseudo-periodicity conditions, the x components automatically sat-
isfy them as well.

Since (3.1) + (3.6) are written in absence of sources, the effect of the current
densities is accounted for as a non- hornogeneous boundary condition. Then, by
observing that, at the access ports, E -ds = EEk) -ds and HE” - ds = ITIEk) - ds,

according to Section 1.2:

Nm Nm a
HYy?)  ds = — %* dac+ i@ [ B3y dz
( Z rn-r n rmn-r
v ’ n=1 0 7 Z:Z\(NZE)
Nom a
E -ds = — v(l)/ e(l)v* dz + 17(2)/ el p* dz.
7{ ( z Wt ey [
wg n=1 wg
Therefore:
(BER),, = / hk) da
0 7 2= z‘(,v?
(B —/ elF) dz.
0 2= zévkg)

For what concerns the left-hand sides, by substituting (3.7) + (3.11) in (3.13)

and (3.14), the following system of matrix equations is obtained:

Aol 4 Aleh) ) — BE2)§(2) _ glejd)
1
Abe)gle) 1 A () — Bh2)e(2) B(h,l){,(l), (3.15)
where:
ALY =j[M - K]
ALY — L
A — jL
Al = j[M - K],
and:
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3. Mortar element analysis of 2-D periodic structures

(M), = // kY ul9v* dzdz
b

kY _3u£e) vt ol v
K — T T
(K)re //Z/#—k; oz 0z or or| TV

k _8u(h) o ou ov*
L — Y c ro_ c r )
(L)re / /2 Rk | 0z ox o 02 dvdz

3.2.3 Continuity equations at the access ports

The formulation of the method is completed by coupling the internal and external
sub-problems through the continuity conditions of the transverse fields at the access
ports, as in Chapter 1. The matrix T containing the projections of the restrictions

of the basis functions at the access ports is now reported:
_Tge,e) T(le,h)_
Tgh,e) Tgh,h)
Tge,e) Tge,h)

Tgh,e) T(h,h)

2

where:

“ ik, Ou
T(e,e) e :/ . * J Yy C % d
( k ) 0 [U ey,r kQ . kz ax e:c,r ) T
Zwg
¢ jkZ Ou
T(e,h) e = / J cezr da
( k ) 0 k? — k; 0z ’ Z‘(V;;)
¢ kY Ou
T(h7e) re — T / J “h: dz
( k ) 0 k2 . k; 82 x,r Z&kg
“ ik, Ou
T(h,h) e = / ch* _ JRy ch* dr.
( k ) o (% y,r k2 _ ]{5 ax x,r Z(k) X

3.3 Results

In this section the mortar element method is validated through a comparison with
results obtained with a MoM code and with the CST-MS frequency domain solver.

The integrals involved in the evaluation of the matrix elements are calculated with a
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3.3. Results

Gauss-Legendre quadrature rule with Nguaq = 32 nodes. It is remarked that, at the
interfaces between different dielectrics, some field derivatives are discontinuous; for
this reason, it is convenient to divide the domain ' in patches where the dielectric

is homogeneous, to avoid Gibbs phenomena.

3.3.1 Array of rectangular dielectric rods with H-polarized

and F-polarized plane waves

The first benchmark case is an array of rectangular dielectric rods. The unit cell of
the problem and the patching used for the domain decomposition are reported in
Fig. 3.4. The geometry of the structure is defined by: a = 400 pm; the length of the
dielectric Lq is 120 pm; the width of the dielectric Wy is 100 pm; the access ports
are placed at L1 = 100 pm from the left part of the dielectric and at Ly = 300 pm

from its right part. The refraction coefficient n is 2.25.

LIS -1
x I S~ 3 _---
| |
I 4 5 2 I a
| |
> [ 1 . ~ <
z : .
Y Ly  La L

Figure 3.4: Domain decomposition approach applied to the array of rectangular
dielectric rods; the dashed lines and the numbers identify the patches. The distance

from the access ports are L; and Ls; the patch 5 is filled with dielectric e, = n?.

Figures 3.5 and 3.6 show the reflection coefficient response for the fundamental
Floquet TE, and TM, modes, for an incidence angle of ¥ = 80°. These results
are compared with the ones obtained by means of an in-house mode-matching code
where 51 modes have been used to guarantee the convergence of the method [30],
[31]. The MEM code was used with Ny = 48. There is a remarkable agreement
between the curves relative to the TE, polarization even in presence of the Wood’s
anomaly that occur in the proximity of the frequency where the -1 order mode starts
propagating in the grazing direction. On the other hand, the solution of the TM,
problem is not very accurate, owing to the singularity of the electromagnetic field
in the proximity of the dielectric edge. Indeed, even if the domain decomposition
approach solves the Gibbs phenomena issues, the number of functions should be
increased to obtain a better representation of the singular field components. This
is proved in Fig. 3.5, where, with N; = 186, a good agreement is achieved. Figure

3.7 shows a comparison of the convergence curves for the TE, and TM, incidence
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Figure 3.5: Magnitude and phase of the TE( reflection coefficient for the structure
in Fig. 3.4.
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Figure 3.6: Magnitude and phase of the TMj reflection coefficient for the structure
in Fig. 3.4.

cases; the difference in the convergence rates for the two polarizations is apparent.
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— TE incidence
= = =TM incidence

Ioglo(z—norm Error)
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Figure 3.7: Convergence study of the infinity norm error of the TEj (solid curve)

and TM, (dashed curve) reflection coefficients.

3.3.2 Array of dielectric cylinders with skew incident plane
waves
As second benchmark case the array of circular cylinders analyzed by Yokota and

Sesay is considered [17]. Each cylinder has radius 0.3a, where a is the period of the
structure, as reported in Fig. 3.8. Figure 3.9 shows the adopted patching. Figure

Y

Q0000 +

<> <>
0, 6a a

z
Figure 3.8: Array of cylindrical rods excited by an incident plane wave.

3.10 shows the TE; mode power reflection coefficient |R0|2 for different permittivi-
ties; a plane wave with ¢ = ¥ = 0° is incident on the structure. It is observed that
the peak of the power reflectance moves to higher frequencies as the permettivity
decreases; also, the sideband of the power reflectance decreases with decreasing per-
mittivity of the cylinder. Good agreement is obtained with the reference, obtained

using frequency domain solver of CST-MS, for every analyzed case.
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X

U Z <>

Figure 3.9: Domain decomposition approach applied to the array of cylinders de-
scribed in Fig. 3.8; the dashed lines and the numbers identify the patches. The
patch 5 is filled with dielectric ¢,.

3.3.3 Array of dielectric rods with skew incident plane waves

The third analyzed structure is the array of dielectric rods used as reference for the
formulation, presented in Fig. 3.1. The domain decomposition approach applied to
this structure is described in Fig. 3.11, where five patches have been adopted.

The geometry of the structure is defined by: a = 100 pm, Lq = 40 pm, W4 = 30
pm. The access ports are located L. = 55 pm from each vertical dielectric interface,
the refractive index in the patch 1 is n = 2.21, the incidence angles of the plane
wave are ¥ = 55° and ¢ = 20°.

In Fig. 3.12 the TEy-TEq reflection coefficient is reported; NV, = 8 modes have
been used to represent the electromagnetic field at each access port and Ny = 84
entire-domain basis functions (that are generated by means of fifth-degree polyno-
mials) are used to represent £, and H,. The reference solution has been obtained
by an in-house MoM code where Ny, viom = 50 modes are used to approximate the
Green’s function [30], [31]. This choice ensures the convergence of the scattering
parameter. Good agreement between the two curves can be observed even if in the
available MoM code the corners are assumed to be sharp, whereas in the MEM code
they are rounded with R = Lq/40. In Fig. 3.14 the magnitude and phase of the TE,
mode reflection coefficient obtained with the MEM (solid lines) and with the MoM
(dashed lines) are reported for f = 1.2 THz as a function of the incidence angles. In
Fig. 3.15 the simulations of the frequency responses of the TE(-TEy mode reflection
coefficients obtained with the MEM using different radii of curvature R is reported;
it is observed that the presence of rounded corners causes a shift of the frequency
of the reflection zero.

In Fig. 3.13 a comparison between the TEy-TEq reflection coefficient simulated
with the MEM code and with CST-MS is shown for the same structure with radii of
curvature of the corners changed to R = Lq/4; a remarkable agreement is achieved

also in this case.
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Figure 3.10: Power reflection coefficient |Ry|” of the fundamental space harmonics

for different relative permittivities as a function of the normalized frequency a /.
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Figure 3.11: Domain decomposition approach applied to the structure of Fig. 3.1;
the dashed lines and the numbers identify the patches. The distance from the access
ports if L.;. The patch 1 is filled with dielectric &, = n?.

3.3.4 Surface-relief diffraction grating

The MEM has been used to analyze a silicon surface-relief diffraction grating, where
the rounded corners take into account the non-idealities that occur during the man-
ufacturing process. A typical fabrication cycle has four steps: spin photoresist,
expose and develop, etch, and clean. The first cause of rounding is the thickness
nonuniformity of the applied mask, particularly with photoresist masks. Secondly,
etching may not be as anisotropic as desired, leading to the rounding of sharp cor-
ners [28]. The geometry of this structure and its patching are reported in Fig. 3.16.
The period is @ = 2 pm, the dielectric tooth dimensions are Lq = 700 nm and
Wq = 800 nm, the distance of the left port from the dielecric is L; = 1 pm, the
height of the dielectric substrate is Ls = 500 nm, the distance of the right port from
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Figure 3.12: Magnitude and phase of the TEy mode reflection coefficient of the array
of dielectric rods of Fig. 3.11, with R = L4/40. The solid and dotted curves refer
to the MEM and with MoM simulations.
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Figure 3.13: Magnitude and phase of the TEy-TE; mode reflection coefficient for
the array of dielectric rods of Fig. 3.11, with R = Lq/4. The solid and dotted curves
refer to results obtained with the MEM technique and with CST-MS, respectively.
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Figure 3.14: Magnitude and phase of the TEy mode reflection coefficient versus o
of the array of dielectric rods of Fig. 3.11, with R = L4/40, for f = 1.2 THz, for

some  angles.
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Figure 3.15: Magnitude of the TE; mode reflection coefficient of the array of dielec-
tric rods of Fig. 3.11, with ¥ = 55°, ¢ = 20°, for different values of the curvature

radius R.
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Figure 3.16: Domain decomposition approach applied to the realistic model of a
surface-relief diffraction grating. The patches 4 to 8 are filled with dielectric e, =
n?, the remaining ones with vacuum; all the corners are rounded, with radius of

curvature R.

the substrate is Ly = 500 nm, R = Lq/4, the incidence direction is ¥ = 43°, ¢ = 30°.
The silicon dispersion model (Edwards and Ochoa, 1980) is reported in Fig. 3.17

for the relevant frequency range [29]:

0.159906 1 2
—3.41 0123109 (| ——
n = 341983+ 5 ggg — 0123109 <>\2 - 0.028) *

+1.26878 x 107A%2 — 1.95104 x 1072\*

In Figs. 3.18, 3.19 and 3.20 the comparisons of the TEG-TEy, TMy-TM, and
TMy-TE, reflection coefficients simulated with the MEM code and with CST-MS
are reported. Ny = 148 entire domain basis functions (generated by polynomials of
degree 5) and N,, = 4 modes have been used in the MEM simulations. A remarkable

agreement has been achieved also for very low levels of reflection coefficient.

3.4 Conclusions

The formulation of the plane wave scattering problem from a dielectric periodic
structure has been presented; the unit cell problem has been solved by means of
the mortar element method. The results of this technique have been compared to
reference solutions obtained with a MoM code and with a commercial code. This

procedure validated the numerical method.
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Figure 3.17: Refractive index of silicon versus frequency.
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Figure 3.18: Magnitude and phase of the TEy-TE, reflection coefficient for the
surface-relief diffraction grating of Fig. 3.16, with R = L4/4. The solid and dot-
ted curves refer to results obtained with the MEM technique and with CST-MS,

respectively.
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Figure 3.19: Magnitude and phase of the TMy-TM, reflection coefficient for the
surface-relief diffraction grating of Fig. 3.16, with R = L4q/4. The solid and dot-
ted curves refer to results obtained with the MEM technique and with CST-MS,

respectively.
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Figure 3.20: Magnitude and phase of the TMy-TEq (TEq incident) reflection coef-
ficient for the surface-relief diffraction grating of Fig. 3.16, with R = Lg/4. The
solid and dotted curves refer to results obtained with the MEM technique and with

CST-MS.
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Chapter

Mortar element analysis of axisymmetric

guiding structures

4.1 Introduction

Axisymmetric waveguide components are widely used as building blocks for complex
radio-frequency systems, especially in high-frequency and high-power applications,
such as satellite telecommunication payloads. As an example, multi-beam antennas
are systems with very demanding design specifications that are widely used to cover
a well-defined geographical region with several beams generated by an array of ra-
diators that feed a reflecting surface [32]. Thanks to their potential characteristics
in terms of matching, low cross-polarization levels and high efficiency, smooth-walls
circular horn antennas are optimal candidates as array elements. These devices are
composed by a cascade of slope discontinuities such as the one reported in Fig. 4.1,
which are designed to excite the desired field configuration. Although in regions 1
and 3 the electromagnetic field can be represented by means of circular and conical
waveguide modes respectively, no modal representation of the field in region 2 is
available [33]. Hence, the application of the mode-matching technique (MMT) to
this discontinuity is not straightforward. A classical analysis procedure adopted to
overcome this problem is based on the introduction of a staircase approximation
of the tapered profile. The discretized geometry is, then, analyzed as a cascade of
waveguide steps, where each step is characterized by its generalized scattering ma-
trix (GSM). Each GSM is obtained by applying either the MMT or the method of
moments (MoM) [34], [35], [36]. However, this strategy is not particularly suitable
for the analysis of complex-shape structures, e.g., choked mode converters used in
compact corrugated horn antennas [37], [38], [39]. An alternative approach involves

the use of the finite-element method (FEM) of scattering problems involving pene-
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4. Mortar element analysis of axisymmetric guiding structures

Figure 4.1: Longitudinal section of a junction between a circular and a conical
waveguide. The dotted line is the longitudinal axis, whereas the dashed lines denote

the waveguide ports for the regions 1 and 3.

trable bodies of revolution has been introduced in the late '70s [40]; more recently,
another FEM-based formulation has been applied to the development of a CAD tool
for radiating structures [41].

In this chapter a novel technique aimed at analyzing axisymmetric waveguide
structures is described [42]. The decomposition approach described in Section 1.2
is applied to this method: the external sub-problem refers to the canonical access
waveguides for which the modal basis representation is available, whereas the inter-
nal one is defined on the complex-shape region inside the device, where the boundary
value problem (BVP) is solved by means of a multi-domain spectral method, i.e.,
the mortar element method (MEM). In Section 4.2 the formulations of the internal
BVP and of the continuity conditions of the tangential fields at the access ports are
described. Section 4.3 reports the validation of the present method by comparison

with other numerical techniques for some devices.

4.2 Theory

4.2.1 Description of the reference scattering problem

The present method is applicable to structures that exhibit axial symmetry and it
is used to compute the GSM of the device in the circular waveguide mode basis. For
the sake of clarity and without any loss of generality, the method is here described by

considering the reference structure shown in Fig. 4.2 consisting of a slope transition
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between two circular waveguides. The vertical dashed lines identify the separation
section Zé’é) between the internal (gray) and external sub-problems, where the access
ports are defined. The incident field E(® is circularly polarized, meaning that a

e™¥ azimuthal dependence of each field component is assumed. The BVP defined

AP
N o
P2 ! :
1 |
[ — 1 1 3 1 (2)
gl pid G, ) e
...... o : = 1
- 5
24 22

Figure 4.2: Section in the (z,p) plane of a slope discontinuity. The gray internal
region X' is divided in three patches separated by the dashed lines to apply the

multi-domain strategy. Each access port is located at z = zv(vkg) and its radius is

k
o)
in the internal region X' is derived from the curl Maxwell’s equations in absence of
sources, written in cylindrical coordinates; the angular derivatives are replaced by
“im”, being m the index of the cylindrical harmonic index, owing to the harmonic

azimuthal field dependence and to the axial symmetry of the structure:

% imE, — % = —jwpH, (4.1)
% - aa_% = —jwpH, (4.2)
imH, - % = juck, (14)
% 852 = jweE, (4.5)

Here, ¢ and p are intended to be complex quantities. As in the 2-D analysis of
E/H-plane components [9], the electromagnetic problem in axisymmetric devices
is conveniently formulated in terms of the field components directed along the in-

variance direction of the structure, which in this case are E, and H,. Hence, the
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4. Mortar element analysis of axisymmetric guiding structures

remaining components are obtained as a function of the angular ones, by manipu-

lating (4.1), (4.3), (4.4), (4.6):

B =—— J i <ma(gf¢) —i—/{:sz%) (4.7)
H,= —— J i <m8(p£“”) kYp2%> (4.8)
B.=-— B i (mpaai e Kz a%f”) (4.9)
H = ——; ) i </<:Ypa(g]j¢) a@i “”), (4.10)

where:

k = wy/ue, Z =

The derivation of these expressions is reported in Appendix D.2. Unless m = 0, these

o 1%

components depend on both E, and H, and, hence, the boundary value problem is
vectorial. On the other hand, if m = 0, the problem splits up into the independent
TE, (involving the E,, H,, H, components) and TM, (involving the H,, E,, E,
components) problems; these cases are studied separately from the general one. It
has to be noted that, up to this point, the singularity in p = m/k appearing in
the right-hand sides of (4.7) + (4.10) is removable, since these expressions represent
regular functions and no approximation has been introduced.

The remaining components of the Maxwell’s curl equations (4.2) and (4.5) are
used with (4.7) + (4.10) to formulate the internal BVP; these equations are sup-
plemented with the PEC boundary conditions on the segment ypgc where they are
required:

{ E,=0 (2,p) € YPEC (411)

EESO) /S\: 0 (Zap) € YPEC,

where EE“D) is the electric field in the (z, p) plane and § is the tangent unit vector
of yprc. The unknowns F, and H, are then represented as linear combinations of

entire-domain basis functions defined on the region X'

c=1
o (4.12)

fun

Hy = 35 duld (e, ).
c=1
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4.2. Theory

The basis functions u'" belong to the space VI of continuous functions with inte-
grable derivatives, whereas ul® belong to the sub-space V) c V1 which includes
only functions vanishing on ypgc. Indeed, the Dirichlet condition on E,, is an essen-
tial boundary condition and it has to be explicitly enforced. On the contrary, the

condition on E{¥)

is of natural type and, consequently, it is enforced in the weak
formulation without further specializing the functions used to represent H, [12,
Chap. 3|. These sets of entire-domain basis functions are numerically synthesized

as described in Section 1.3.

4.2.2 Formulation of the internal BVP : m # 0 case

The ¢ components of the Maxwell’s curl equations (4.2) and (4.5) are cast in weak

form by projecting them onto a set of functions o = 4™ and v = o respec-

—JkZ// H, o) dzdp—// [ ] M dzdp
ikY E 0" dzd :// oH, OH. (©* dz dp.
.] /\/4;‘ CP’UT z p 5 az ap vr z p

Then, integration by parts by means of the Stokes theorem is performed, and the

tively:

following equations are obtained:
Y 82 - FE, o dzdp = j{(EE@)vﬁh) ) - ds

—JkZ// HyoM dzdp—i—//
(4.13)
(e)* 3117{6)* )
Jk‘Y// E Ue)*dzdp+// o 8,2 — H, o dzdp:jg(Ht‘p Uﬁe)*>.dS,

(4.14)

where 7 = Yprc U Vaxis U 75@) U 7 is the boundary of X' as shown in Fig. 4.4 and
EE“O and Ht“o) are the electric and magnetic fields transverse to ¢.

Since the general m # 0 case gives rise to a vector differential problem, the
decomposition approach applied to the structure is described in the top part of
Fig. 4.3, where the equivalence theorem is applied by introducing a couple of oppo-
sitely directed electric and magnetic current densities on the two sides of Eeq ; these
currents are conveniently represented with the modes of the k-th access port waveg-
uide, accordingly to Section 1.2. The bottom part of Fig. 4.3 reports the hybrid
circuit associated to the access waveguide, where only one equivalent modal circuit

is shown for each access port.
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. . (2)
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Figure 4.3: Hybrid equivalent multi-modal circuit of the waveguide structure shown
in Fig. 4.2, where only one equivalent modal circuit is shown for each access waveg-

uide.

Vwg2)

Figure 4.4: Sketch of the internal sub-problem, where the boundary contributions

are emphasized.

As it can be inferred from (4.7) <+ (4.10), the contribution of the axis p = 0 to
the line integrals in the right-hand sides of (4.13) and (4.14) is zero. Moreover, the

contribution of ypgc to the line integrals of (4.14) is zero since the test functions 0l

are vanishing on it; this is equivalent to requiring no condition from HE@). Finally,
the contribution of vypgc to the line integral of (4.13) is set to zero to enforce the
second condition of (4.11) as a natural boundary condition; therefore, the only
non-vanishing contributions to the line integrals come from the equivalent currents

defined on the access ports. Noting that, at the access ports, E,ESD) -ds = Eﬁ’“) - ds
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and HE‘F) -ds = ﬁﬁ’“) - ds, according to Section 1.2:

Nm . Pwg Pwg
Frenyas = =35 [T apeYio [T a
vy n—=1 0 —,( n—=1 0 e (2)
=Zwg —cwg
N o\ Nm pi2)
75 (EPo07) . ds = — i) / Mo dp+ S @ / 2| dp,
v =1 0 _m =1 0 e
—cwg wg
The following matrix elements are then defined:
e
(BEH), — / B dp
0 ’ 2=z
) ® (4.15)
B®H) / ¢ 6;1@”2]7@) dp
=)

Then, by substituting (4.7) + (4.10) and (4.12) in (4.13) and (4.14), the following
system of matrix equations is obtained:

A(e,e)c(e) + A(e,h)c(h) — B(672)i(2) _ B(e,l)i(l)
(4.16)

A(hve)c(e) _I_ A(hvh)c(h) — B(h,2)‘°’(2) — B(hvl)‘of(l)

Y

where:
AE®) =LYy [M(e) + K(e)]
ACP = mL©
Abe) — ij(h)
AP = —ikz (MY + K®]
and
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= / / uPv©*dpdz
X
(©) g,,()x (©)\ 9,,(e)*
1 C T C T
(K(e))rc = // k2p2p [pau » + Olpuc’) v ] }dpdz
- _
]

{ m? 0z 0z ap dp
1 8(puc )Y 0vl* u™ ovl
5 {m2 — k2p? [ dp 0z P75, ap dpd=
)y / / 0
b
(h) g (h)= (h) (h)=
_ // 1 ) pauc Jvy N d(pue ) Ovr dpd
5 | m? — k2p? 0z 0z dp dp
(e) g, (h)x
_ / / 1 8(puc ) Hu* B pf)uc vy dpd:.
5 | m? — k2p? dp 0z 0z 0Op

Since these integrals are obtained substituting a combination of the basis/test func-

o ®™*dpdz

tions and of their derivatives, the singularity in p = m/k is no longer removable,
therefore the integral has to be evaluated with an ad-hoc quadrature scheme, intro-
duced in Appendix D.3.

4.2.3 Formulation of the internal BVP: m = 0, TM, case

In the TM, problem of the m = 0 case, (4.7) and (4.9) simplify as:

i oH,
T kY 02
. . . 4.17
_ 1 OeHy) 0 0 0H, e
T kYp Op kYp ¥ kY 0p

Then, (4.2) is cast in weak form by projecting it on test functions defined as w™ =

p%ﬁh), where vﬁh) = uﬁh) as in the previous section; this eliminates the singularity of
the field components (4.17) in p = 0. Then, the Stokes theorem is applied to obtain

the resulting equation:

—sz// Hyuw® dzdp+//

Since no magnetic field excitation is appearing in the line integrals, the proper

()=
8wr . Ezawr dz dp _ %(EEW)wS‘h)*) . ds.
dp .

version of the equivalence theorem is the one where PEC is used to fill the zero-
field regions, to eliminate the contributions of the electric current densities. This is

described in Fig. 4.5, where the equivalent problems are reported with their hybrid
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Figure 4.5: Hybrid equivalent multi-modal circuit of the waveguide structure shown

in Fig. 4.2, where only one equivalent modal circuit is shown for each access waveg-

uide.

circuits. By applying the same considerations of the previous case, the following

matrix equation is obtained:

ABD ¢®) = BH25@) _ ()

where the line integrals are defined as:

(k)
Pwg
(B™M),, / el v p*dp,
0 2=z
wg
whereas the left-hand side is written as:
1
ABD) — e o0 = g (h0)
) kY ’

where:

(hO)_// (h) (h* dedp
oul ou™

K<h70>:/ © T dad //
Py 62 8 p & p+ by

ou oM
( )+ P 9 P o + 2v

(4.18)

] dzdp.

65



4. Mortar element analysis of axisymmetric guiding structures

4.2.4 Formulation of the internal BVP: m =0, TE, case

In the TE, problem of the m = 0 case, (4.8) and (4.10) simplify as:

/ : . 4.19
j O0(pE,) j 0B, (4.19)

Z:kZp dp  kZp ‘“Lﬁap'

Then, (4.2) is cast in weak form by projecting it on test functions defined as w'® =

p20!? ) where v = 4 as in the previous section; this eliminates the singularity
of the field components (4.19) in p = 0. Then, the Stokes theorem is applied as

follows:

(o)
jkY// B ,uw© dzdp+// [ our” —Hz&gp ] dzdp:]{(HE@w@*)-ds.
v

Since no electric field excitation is appearing in the line integrals, the proper version

of the equivalence theorem is the one where PMC is used to fill the zero-field regions,
to eliminate the contributions of the magnetic current densities. This is described
in Fig. 4.6, where the equivalent problems are reported together with their hybrid
circuits. By applying the same considerations of the previous case, the following

matrix equation is obtained:

Aee) ¢lo) = BE2){®@ _ glenj() (4.20)
where the line integrals are defined as:

(k)
Pwg
B, = [
0 bl

whereas the left-hand side is written as:

ACO _ iy MEO) ¢ L g0

where:

eO)_// (e) (e dde
[ g ]
)
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Figure 4.6: Hybrid equivalent multi-modal circuit of the waveguide structure shown
in Fig. 4.2, where only one equivalent modal circuit is shown for each access waveg-
uide.

4.3 Results

In this section a validation of the MEM is presented by considering two benchmark
cases and a more complex axisymmetric waveguide structure, i.e., a choked mode

converter.

4.3.1 Circular waveguide stub

As a first benchmark case, the Ku-band circular waveguide stub shown in Fig. 4.7
is considered. The input and output waveguides radii are Ry = Ry = 9.525 mm,
the stub width is w = 6 mm, the stub length is ~ = 5 mm and the lengths of the
input lines are L; = Ly = 4 mm. The electromagnetic field at the access ports is

represented by using N, = NMEM)

= 10 modes, whereas the unknowns E, and
H, are expanded with Nfg = 32 and Nf(j‘j = 46 global basis functions, respectively.
Although the polynomial degree of the basis functions {uﬁe) } and {u&h)} is the same,
Nf(lfl)l is smaller due to the enforcement of the essential boundary condition. The

N(MMT)

reference solution is obtained by a mode-matching code, where = 20 modes

are used at the step aperture to ensure the convergence of the scattering parameters.
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Ly Ly

Figure 4.7: Longitudinal section of the smooth waveguide transition considered as a
second benchmark case. This structure is described with a single patch. The dashed
lines denote the access waveguide ports with input waveguide radii R; and R,; L is

the length of the structure.

Fig. 4.8 reports the comparison between the MEM and MMT curves relative to the
TE{; mode transmission coefficient. A remarkable agreement is achieved between
the two curves, with particular reference to the frequency of the transmission zero.

A convergence study of the numerical method with respect to the number of basis

Magnitude of the TE,, transmission coefficient
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Figure 4.8: Magnitude and phase of the TE;; mode transmission coefficient of the
circular waveguide stub shown in Fig. 4.7 (R; = Ry = 9.525 mm, h = 5 mm,
w =6 mm, L; = Ly = 4 mm). The dotted curve (reference) refers to the MMT
simulation. The solid and dashed curves are obtained by the MEM, using singular

and polynomial basis functions, respectively.
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functions used to represent F, and H,, has been carried out for this structure. Three
types of basis functions have been investigated: polynomials, polynomials weighted
by functions that keep into account the radial asymptotic behavior of the field in the
proximity of the edges, and polynomials weighted by functions keeping into account
both the radial and the azimuthal asymptotic behaviors at the edges. The expres-
sions of the asymptotic field behaviours at sharp edges can be found in Appendix
A.2. Figure 4.9 shows the 2-norm relative error ||e)]|, in the transmission coeffi-
cient versus the total number of entire domain basis functions n = ]\ff(uel)l + Nf(fj The
reference solution is obtained using n > 1000. The dot refers to the MEM simulation

S T
Y Radial+Azimuthal
N = Radial

-0.5- ! \\ — — — No Weight H

-1.5

Ioglo(z—norm Error)

0 100 200 300 400 500 600 700
n — Number of basis functions

Figure 4.9: Convergence analysis of the MEM applied to the circular waveguide
stub shown in Fig. 4.7 (R; = Ry = 9.525 mm, h = 5 mm, w = 6 mm, L = Ly =
4 mm). The curves report the 2-norm relative error ||e||, of the transmission
+ Ny
The basis functions used in the convergence analysis are non-weighted polynomials
(dashed line), polynomials weighted by radial singular functions (dash-dotted line),
and polynomials weighted by singular functions with radial and azimuthal behavior
(solid line). The dot refers to the MEM simulation shown in Fig. 4.8.

coefficient versus the total number of entire domain basis functions n = Nf(fl)l

shown in Fig. 4.8 for which an accuracy level of 1072 is achieved. It has to be noted
that at this value of accuracy, which is of interest in the design of high-performance
waveguide components, the use of singular weighting functions with both radial and
azimuthal behavior reduces the required number of basis functions by approximately

one order of magnitude as compared to the case of simple polynomials.
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Figure 4.10: Longitudinal section of the smooth waveguide transition considered
as a second benchmark case. This structure is described with a single patch. The
dashed lines denote the access waveguide ports with input waveguide radii R; and
Ro; L is the length of the structure.

4.3.2 Smooth waveguide transition

The Ka-band smooth waveguide transition shown in Fig. 4.10 is considered as a
second benchmark case. This structure is relevant to assess the capability of the
method to describe structures with curved sides by using a single patch. The input
and output waveguides radii are B = 3.4 mm and Ry, = 5 mm, and the length
of the junction is L = 4 mm. The electromagnetic fields at the access ports are
represented by using NMEM)
N(e)

fun

= 10 modes, whereas E, and H, are expanded with
= 56 and Nf(fg = 64 global basis functions, respectively.

The reference solution is obtained by a staircase approximation of the profile
that is analyzed as a cascade of circular waveguide steps, each one simulated by
the MMT. To assess the MMT accuracy, two discretizations are considered, 1i.e.,
Amin/20 (8 steps) and Ay, /100 (40 steps) [36]. NIMMT) — 90 modes are used in
the computation of the GSM of each step. The comparison between the reflection
coefficient at port 1 for the TE;; mode computed by the MEM and MMT is reported
in Fig. 4.11. In addition to a good agreement between the MEM and MMT results,
it can be noticed that the MMT provides high accuracy in the phase of the reflection
coefficient only when a very small discretization distance dyi, = Amin/100 is used.

A convergence study of the MEM with respect to the number of basis functions
used to represent E, and H, has been carried out for this structure. In this case,
owing to the absence of sharp edges, polynomials can properly represent the elec-
tromagnetic field and, hence, the use of polynomials with weighting functions is not

investigated. Figure 4.12 shows the 2-norm relative error |[e®]|, in the reflection
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Magnitude of the TE, , reflection coefficient
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Phase of the TE, reflection coefficient
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Frequency (GHz)

Figure 4.11: TE;; mode reflection coefficient of the smooth waveguide transition
shown in Fig. 4.10 (R; = 3.4 mm, Ry = 5 mm, L = 4 mm). The solid curve refers
to the MEM simulations, whereas the dotted and dashed lines indicate the MMT
results for the discretizations Ay, /20 and Ay, /100, respectively.

+ N,
The dot refers to the MEM simulation shown in Fig. 4.11 for which an accuracy

coefficient versus the total number of entire domain basis functions n = Nfg
better than 1% is achieved. An exponentially-convergent behavior oc n”, typical of
spectral methods, is observed with an exponential index of convergence r of about
0.8 (dashed line in Fig. 4.12).

4.3.3 Choked mode converter

The MEM has been applied also to the analysis of a choked mode converter [37].
This device is used as the input section of corrugated horn antennas [38], [39],
in order to transform the TE;; mode into the balanced hybrid HE;; mode in a
compact space; this field configuration is very interesting for its radiation properties,
such as the extremely low cross-polarization [43]; further details concerning the
evaluation of the modal conversion efficiency are resumed in Appendix D.4. Along
with very low values of side-lobe level and cross-polarization, this mode converter
provides significant advantages in terms of manufacturing. A 3-D cut of the device
described in [39] operating in the X-band is drawn in Fig. 4.13. Figure 4.14 show the
comparisons between the magnitude of the TE;;-TE;; reflection coefficient, and of
the mode conversion efficiency evaluated on 4 modes; the fifth and sixth higher-order
modes have an attenuation greater than 30 dB and they are considered negligible.

The results have been computed with the MEM and the frequency domain solver of
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MEM error
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Figure 4.12: Convergence analysis of the MEM applied to the smooth waveguide
transition shown in Fig. 4.10 (R; = 3.4 mm, Ry = 5 mm, L = 4 mm). The solid
curve report the 2-norm relative error |[e(®||, in the reflection coefficient versus

the total number of entire domain basis functions n = Nf(fr)l + Nf(fg

(non-weighted
polynomials). The dot refers to the MEM simulation shown in Fig. 4.11, whereas

the dashed line indicates the exponential behaviour oc n%®

CST-MS [27]. In the MEM analysis, the structure has been decomposed into the four
blocks shown in the longitudinal section displayed in Fig. 4.13. For each of them,
the GSM has been evaluated by using NMEM) 15, Nf(li)l = 181 and Nf‘jﬁ = 216.
Finally, the GSM of the entire structure has been computed as the cascade of the four
blocks. A remarkable agreement between the two methods has been achieved, thus
validating the applicability of the MEM to the analysis of complex axisymmetric

waveguide devices.

4.4 Conclusions

In this chapter a novel analysis technique of axisymmetric guiding structures has
been presented. The main advantage of the present method is its capability of
efficiently analyzing any structure, including tapered transitions without profile ap-
proximation, with any type of waveguides at the access ports, e.g., circular, coaxial
or conical waveguides. The results obtained with the code implementing this scheme
have been compared to reference solutions for two benchmark cases and for a choked

mode converter, finding a very good agreement.
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A——i SECTION A-A
Figure 4.13: Choked mode converter described in [39]. In the longitudinal section,

the dashed lines indicate the reference planes of the building blocks analyzed in the
MEM simulation.
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Magnitude of the TE, , reflection coefficient
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Figure 4.14: Top: magnitude of the reflection coefficient for the TE;; mode of the
choked mode converter shown in Fig. 4.13. Bottom: modal conversion efficiency.
The blue and red curves refer to results obtained with the MEM and the frequency

domain solver of CST-MS, respectively.
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Chapter

A boundary-integral equation method for

lens antennas

5.1 Introduction

In the last years many efforts have been spent on the development of terahertz elec-
tromagnetic systems, in particular for astrophysics or security broad-band imaging.
Moreover, since the terahertz electromagnetic spectrum is almost unoccupied com-
pared to the microwaves one, it could be exploited for terabit communications, to
obtain wireless networks with a bitrate comparable to the fiber optics one. The
hardest obstacles in this direction are the poor sensitivity of the devices and the
absence of high-power sources. For what concerns the first issue, sensitivity could

be improved by designing ad-hoc broad-band terahertz antennas.

One of the key features of a broad-band antenna is its radiation dispersion, i.e.,
the position of its phase center, which, usually, has a strong frequency dependence.
On the other hand, if the antenna is used to couple the field from a reflector, the
phase center should remain fixed in the focus in the entire operative band. Consid-
ering the canonical case of an infinitely long slot printed on a ground plane located
between hemi-spaces filled with different dielectric media, it is known that it radiates
in the denser dielectric with two cones, with vertex coincident to the feeding point
and with aperture angle independent of frequency [44], [45]. In other words, this
would be an almost non-dispersive antenna, since its phase center would be fixed in
a huge frequency range. This slot could be used as feeding element of a lens antenna,
which is a frequency-independent structure [46], to focus the two cones into a single
beam. The leaky-lens antenna has been obtained by merging these ideas [47], [48],
[49]; this is an ultra wide-band leaky antenna with fixed beam. This structure has

been already used in several terahertz applications, such as the realization of kinetic
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5. A boundary-integral equation method for lens antennas

Figure 5.1: Sketch of a lens antenna fed by a slot on a ground plane.

inductance detectors [50].

Although the characterization of these antennas at high frequencies can be ef-
fectively performed by using physical optics simulators (PO), small lenses can not
be analyzed with this method, due to the multiple reflections inside the dielectric
that are not kept into account by the PO.

In this chapter the development of a full-wave simulator aimed at studying lens
antennas is described; both the slot antenna and the dielectric lens are modeled, to
keep into account mutual coupling effects. In Sections 5.2 and 5.3 the formulations
of the slot and lens problems are developed; these formulations refer to the simplified
case of a structure with no air-gap between the slot and the lens. In Section 5.4
the two problems are coupled and the integral equations described in these sections
are solved by means of the method of moments (MoM). In Section 5.5 some im-
plementation notes are described. In Section 5.6 some preliminary results obtained

comparing, when possible, the MoM code with a commercial code are presented.

5.2 Formulation of the slot problem

5.2.1 Continuity of the magnetic field integral equation

The technique described in this chapter is applied to the structure sketched in Fig.
5.1: a lens antenna given by a dielectric hemisphere placed on a dielectric cylinder
is excited by a slot on a ground plane; the relative dielectric constant of the lens
is 1. The slot has length Ly, width W, the cylinder has height L. and radius R.
Assuming that the slot is radiating in two uniform half-spaces filled with dielectric
g1 (top) and gy (bottom), the equivalence theorem is applied leading to the two
de-coupled problems sketched in Fig. 5.2: the slot area £®) in the ground plane

is filled with PEC, and a couple of oppositely directed magnetic current densities
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Figure 5.2: Slot radiating on two homogeneous half-spaces (left), and equivalent

sub-problems.

are introduced to restore the slot field. Then, the continuity of the magnetic field
integral equation (CMFIE) is formulated to complete the slot problem [51]. Let Hy
and Hy be the magnetic field in the top and bottom regions; then, the CMFIE is:

H, = H,.

Both these fields are then written as the sum of the incident and the scattered

contributions:

H1 _ Hginc) + Hgscat) (51)
HO _ H(()inc) + H(()scat). (52)

Therefore, by substituting and re-arranging, the following expression is obtained:

scat scat inc inc
H{ — g = gl — g,

Then, let H®) equal the right-hand side term; then, the CMFIE is written using

the integral representation of the magnetic field in each equivalent sub-problem:

77



5. A boundary-integral equation method for lens antennas

/ GO M® da'dy’ — / GO . (—M®) d/dy — H),
X 5(s)

where M®) = MO (2/,4/); G® = G®)(z, 2/, 9,9/) is the Green’s function of the k-
th region. The primed variables represent the source points, whereas the unprimed

ones the points of the spatial domain. The integral equation becomes:

/ [G(l) (l’, '1'/7 ya y/) + G(O) (.T, lj? y7 y/)} ’ M(S) (.ZE,, y/) dx/dy/ = H(inC)' (53)
3 (s)

5.2.2 Method of moments - slot problem

The unknown of the integral equation is M(®); therefore, it is represented as a sum

of known functions defined on X\ ¢ ¥ )| weighted by unknown coefficients:

NG

fun

ry) = eOM. (e, y); (5.4)

additional details concerning the chosen basis functions are found in Appendix E.3.1.
By substituting this expression in (5.3) and by applying the Galerkin version of the
method of weighted residuals, i.e., using as test functions the expansion functions,

the following equation is written:

= / ()Mr(x,y)-H(inc)dxdy, Vr=1.N%, (5.5)
PN
where:
B / M (—ky, —ky) - Glke, ky) - M (ke k) b, dky,
]R2
and:

1 ~ : ’ : /
G(x, 2", y,y) = ye / G (ky, ky)e k@)= =) qFdk,
R2
M(S) _ / (b)M z,1)e —jkzw Jkyydxdy
M (ky, k) = / / o M,y vdady,
xe®

where G (k, ky), Mﬁs)(—k‘x, —k,) and M (k:x, k,) are the Fourier transforms of the
Green’s function G and of the basis functions used to approximate the slot magnetic
current density. Additional details are reported in Appendices E.3 and E.2, where
the derivation of these expressions of the MoM matrices and of the spectral domain

dyadic Green’s functions are reported.
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Figure 5.3: Sketch of the lens antenna, fed by the equivalent slot magnetic current
density M®).

5.3 Formulation of the lens problem

The integral equations describing the lens antenna are now deduced, for the problem
sketched in Fig. 5.3; here, the slot magnetic current densities M® are the sources
of the problem. Let XU be the separation surface between the dielectric volume
(e; = €1) and the vacuum (e, = €3). Let (E1, H;) be the electromagnetic field defined
inside X", The external region with fields (E,, Hy) is unbounded and no current
densities are present. This problem is divided in two homogeneous sub-problems by
means of the equivalence theorem by introducing current densities on X, Since all
sources are defined in the internal region (1), the electromagnetic field is written as
the sum of the incident and the scattered contributions:
E, — Eginc) n Egscat)
{ H, — Hm (scat) (56)
=H} 7 +H;.

For what concerns the external region (2), there is only the scattered contribution,

owing to the absence of sources:

E, = Egscat)
(scat) (57)
H2 - H2 .
The continuity equations of the tangent fields on X1 are now written:
nx E, =nxE,
N R (5.8)
n X H1 =n X HQ

Starting from these equations, the two equivalent sub-problems are now formulated.
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Figure 5.4: No-scatterer equivalent sub-problem.

5.3.1 Equivalent problem 1: no-scatterer problem

The first equivalent problem is the no-scatterer one, described in Fig. 5.4. Here, the
space is filled with dielectric e; then, inside X0, (E, H) = (E* H), whereas
outside of XV (E,H) = (—E™ —H™)). The equivalence of this sub-problem
with the original one is guaranteed by defining the electric and magnetic current
densities J and MM on Y. Equations (5.6) and (5.7) are now substituted in
the first equation of (5.8):

ﬁ « (Eginc) + Egscat)) _ ﬁ % Egscat).
By bringing the incident term of the left-hand side to the right-hand side, this

equation becomes:

A x Egscat) — _fix Eginc) +h Eéscat)7
so, by defining;:
M® =5 x E§ = —Ef x q, (5.9)

the following expression is written:

i x B = _f x E™ 4 MO,

This equation represents the scenario of Figure 5.4. Similar considerations are then

applied to the magnetic field, leading to:

fi % (Hginc) + Hgscat)) —fix H;scat)‘

This becomes:

% Hgscat) — _fix Hginc) + 7 x Héscat).
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Figure 5.5: No field in the source region equivalent sub-problem.

Then, by defining:

—

JO =7 x HF, (5.10)

[\

this becomes:

ax HE = —f x H™ + JO. (5.11)

In both terms we have only current densities or field components defined on the
medium 1; therefore, in this problem, the entire space is filled with homogeneous

medium characterized by a dielectric constant equal to e;.

5.3.2 Equivalent problem 2: no field in the source region

problem

In the second equivalent problem, which is described in Figure 5.5, there is no field
in the source region. The space is filled with dielectric 5. Inside the surface XU the
electromagnetic field is null, whereas, outside of it, it equals the initial problems’
one: (Egscat),H(zscat)). To guarantee the equivalence of this sub-problem with the
original one, the electric and magnetic current densities J©® and M® are defined

on XU, So, by working on (5.6), (5.7) and (5.8), the following equations are written:

fi % (E(linc) + Egscat)> — 5 % E;scat)
A % (Hginc) + Hgscat)> —fi x Hgscat).

Then, it is necessary to bring to the right-hand side all the terms in the left-hand
side:
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5. A boundary-integral equation method for lens antennas

Then, by defining:

M(Q) _ (Elinc) + Egscat)) < fi= —%i ¥ (Eginc) + Egscat)) (512)
J® = _f x (H™ 4 g, (5.13)

these equations become:

0 =1 x Ef 4+ M® (5.14)
0=n x H 4+ J@ (5.15)

There are no field contributions from the internal region, since they are included in
the magnetic current densities; moreover, inside £ there is no field, so it is possible

to fill this volume with dielectric e5.

5.3.3 PMCHW formulation

In this section the previous results are merged to obtain the integral equation accord-
ing to the Poggio-Miller-Chang-Harrington-Wu formulation (PMCHW) [52]. From
(5.9) and (5.14), since (5.8) holds, the following equation is obtained:

ﬁ « (Eginc) + Egscat)) _ ﬁ % Egscat).

Similar results hold for the magnetic field:

M =M = _M®@ (5.16)
J=J0=_30 (5.17)

Let XM~ and YO indicate a neighborhood of X'V inside and outside the volume
delimited by the surface; then, the following fields are defined:

e E H are the electric and magnetic field radiated by the currents J, M rela-
tively to the problem 1 (no-scatterer problem) on X+ therefore in a homo-

geneous medium characterized by e;;

e E; H; are the electric and magnetic field radiated by the currents J, M rela-
tively to the problem 2 (no field in source region problem) on £®~ therefore

in a homogeneous medium characterized by ¢;.
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5.3. Formulation of the lens problem

The following continuity equations are now written:

(fi x Ef = -1 x E{™

fi x Hf = —n x H™

AxE; =0 (5:18)
5 =

| nxHy =0.

Now, let us consider two coefficients «, 8 € C; then, these four equations are com-
bined by taking the first and third one, multiplying them times a and 3, and adding

them to the second and fourth ones. This leads to the following set of equations:

(5.19)
—fix (BHf +Hy) =1 x (5H§m°>)
If « = 3 =1, this is the PMCHW formulation:
~fix (Ef +E;) =1 x (E?“C)>
(5.20)

It is possible to write (5.20) in a more compact and useful way; first, these equations
are projected on the unit vector jc\tangent to X0: then, the superscripts are removed,
leading to:

_ <E§1) 4 E§2)> _ Eginc)

o | (5.21)
. <H§ )+ H )) — H{",

5.3.4 Method of moments - lens problem

Equations (5.21) are now modified and discretized according to the method of mo-
ments. The electric and magnetic fields in these equations are represented using the
mixed-potential integral equation (MPIE) formulation described in Appendix E.1.2;
here, the differential operators are shifted on the current densities, obtaining more
regular integrand functions. Since the structure is backed by a ground plane, the
proper Green’s function is used to calculate the electromagnetic field; this is derived
in Appendix E.1.6. The unknowns of the problem are the electric and magnetic cur-
rent densities J and M defined on the dielectric discontinuity; both these quantities
are represented using the Rao-Wilton-Glisson basis functions (RWG) [53]:
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5. A boundary-integral equation method for lens antennas

l
n_o+ +
ZA;LFP"’ iftreT)
In
0 otherwise.
So:
Nfun
r) ~ Z a9 f,(r
c=1
Now. (5.23)
r)~ Z 2™ £, (r)
c=1
The weak-form MPIE representation of the electric field is:
Nfun Nfun
(#0.210) - 35, 3o,
c=1
where,
D) =jopo [ 07 [ gylr - vl ' et
D, D,
£ (r V-f dr'dr 5.24
Jw&)g]/u ) [ otr—x)V -0 (5.24)
/ (r) [Vg;(r —1')] x f.(r') dr’ dr. (5.25)
r D,

Similar results hold for the magnetic field:

Nfun Nfun
, 1 .
<HEJ)> fr(r)> 7 Z 2 ( DY), + Z xEJ)(K(J)
J =1 c=1
where:
Z = |
€0E;j

All the calculations aimed at obtaining these results are reported in Appendix E.4.

Finally the matrix versions of the PMCHW equations are:

— (DM 4 D) x0) 4 (KO + K®)xm = <E§inc>, fr(r)> . Vr=1..Nun

1 ; inc
_ ﬁ<K(1) +K®)x0 — (DO { D@y xm = <H§ )7fT(r)> Ve =1. N,

J
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which is compactly written as:

Al Alem) x () b
= , (5.26)
A A(m) | (m) pb®

where:

Aled) — _(D(l) + D(2))
Alm) — KO 4 K@)

A — _(K(l) + K(2))
1

72
Z

Al — _ (D) L D®@).

5.4 Coupling of lens and slot problems

Equations (5.5) and (5.27) are now coupled using their right-hand side terms as
coupling terms. Indeed, the incident field on the lens is generated by the slot; on the
other hand, the field scattered by the dielectric interface causes a variation of M®)
with respect to the current present when the slot is radiating in the homogeneous

space. For this reason, the following expression is written relatively to the slot:

Hne) — Hlines) L 7O L plm) —
— —

source lens

= X6(x)0(y)0(2) + G T T 4 GO T ML
The incident magnetic field on the slot has three contributions: the source one, which
is the known term of the problem (the spatial Dirac delta) plus the contributions
coming from the electric and magnetic current densities defined on the slot. For

what concerns the lens, the only source term is M®), therefore:

El — g6 = gl T M©®
Hginc) _ H(s) — G(hﬁ) * M(S)

Since the slot and the lens are spatially separated, the MoM integrals do not contain
any singularity, the Green’s function field representation is used in place of the
MPIE; in these cases, the dyadic Green’s function is derived in Appendices E.1.5
and E.1.6. Then, by recalling (5.4) and (5.22):
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Nfun

H™) =%5(x —|—Zx/ G (r ) - f.(r') dr'+

Therefore, the matrix equation of the coupled problems, after substituting these
terms in (5.4) and (5.22), is

[ACD)  Alem) Als)] [x0)

Al AGm)  AG | [gm) | = (5.27)

AGD  Alsm)  A(ss) x(9)

where b comes from the projection of the source X§(z)d(y)d(z) on the test functions,

(A(s’j))rc — _(A(e,S))TC = // fT.<I‘) . / G(QS) (I', r/) . MES) (r’) dr’
D, Dy,

(A(s,m))rc — (A(h’s))rc — // / G hS r I‘ -M S)( )dI‘ .
D, Dy

5.5 Implementation notes

and:

5.5.1 Calculation of singular integrals

The integrand functions of (5.24) and (5.25) are singular if the cell where the field is
generated (source cell) has common points with the one where the field is observed
(observation cell). This occurs for r = ¢, which is the self-term case, but also if
the source cell has a common edge with the observation cell, which is the near-term
case. This problem is very known in literature and it has been tackled in several
ways.

The classical approach for the calculation of these integrals is the singularity
subtraction scheme: the Taylor expansion of the scalar Green’s function is sub-

tracted from the Green’s function itself, to obtain continuous integrand functions;
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this integral can be calculated numerically by means of an ad-hoc Gauss-Legendre
quadrature rule [56], [12]. The integral involving the Taylor expansion can be cal-
culated analytically [54], [55].

In the method described in this chapter the zero-order Taylor expansion is sub-
tracted and re-added to the scalar Green’s function; the self terms of (5.25) are
zero, as proved in Appendix E.4; the self terms of (5.24) are calculated with the
closed-form formulas introduced in [57]. The near terms are calculated with the
algorithm described in [58], which summarizes the singularity-subtraction schemes

proposed in literature.

5.5.2 Introduction of symmetries in the MoM matrix

Although the shape of the lens suggests to use a BOR formulation, this problem is
3-dimensional owing to the presence of the feeding slot, therefore the field in the
lens cannot be expanded using cylindrical harmonics as suggested in [52]. However,
the complexity of the problem has been reduced by developing an ad-hoc meshing
tool, which is used to discretize the lens as a set of slices, as depicted in Fig. 5.6.
This tool provides a proper numeration of the RWG basis functions, transforming
the symmetry of the lens into a symmetry of the MoM matrix. The result is a block-
Toeplitz MoM matrix, where only the integrals belonging to few blocks should be
calculated. Then, the matrix is assembled a posteriori; moreover, this division
in blocks suggests to apply a parallel approach to the calculation of the integrals.
Figure 5.7 shows a plot of the phase of the MoM matrix elements; several patterns

can be observed.

5.6 Results

The method described in the previous sections has has been validated through a
comparison with the time-domain solver of CST Microwave Studio (CST-MS). In
Fig. 5.8 the E-plane and H-plane radiation patterns of a lens antenna with ¢, =
11.9, Ly = 50 mm, Wy = 1 mm, L. = 30 mm, R = 95 mm are reported for f = 3.5
GHz. In Fig. 5.9 the E-plane and H-plane radiation patterns of a lens antenna
with ¢; = 11.9, Ly = 100 mm, Wy = 1 mm, L, = 30 mm, R = 95 mm are reported
for f = 2.25 GHz. Since in both the figures a good agreement can be observed, the

formulation of the method and the implemented code is validated.
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Hemisphere + Extension length mesh

120
100
80
60
40
20

z (mm)

~

-50 ¥ N 50
KRRRR
0 KRN 0
50 -50
X (mm) y (mm)

Figure 5.6: Example of mesh of a lens antenna with R = 90 mm, L, = 30 mm,
f = 1.5 GHz; the mesh consists of 10 slices.

5.7 Conclusions

In this chapter the development of a boundary-integral equation method aimed at
analyzing dielectric lens antennas has been described. The method can be used to
evaluate the mutual effects between lens and slot. The slot problem is described by
using the CMFIE, which is solved by means of a method of moments defined in the
spectral domain. The lens problem by using the PMCHW formulation, where the
fields are described by using a MPIE formulation. The method has been validated
by comparing the radiation patterns obtained with the present method and with a

commercial simulator.
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Phase of the MoM matrix elements
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Figure 5.7: Phase of the MoM matrix elements for a lens antenna with R = 90
mm, L, = 30 mm, f = 1.5 GHz; the presence of symmetries in the matrix can be

observed; r and ¢ are the matrix element indexes.
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Figure 5.8: Radiation pattern for the lens antenna with ¢; = 11.9, Ly = 50 mm,

Ws=1mm, L, =30 mm, R =95, at f = 3.5 GHz.
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Figure 5.9: Radiation pattern for the lens antenna with ¢; = 11.9, Ly = 50 mm,
Ws=1mm, L, =30 mm, R =95, at f = 3.5 GHz.
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Chapter

Design of a dual-polarization Vivaldi

antenna

6.1 Introduction

Modern low frequency radio telescopes are based on the use of large aperture arrays,
where imaging is performed by using state-of-the art digital back-ends and signal
processing software. The Low-Frequency Array (LOFAR), the Long Wavelength
Array (LWA), the Murchison Widefield Array (MWA) and the Square Kilometer
Array (SKA) are among the most famous examples of a new generation of either

existing or planned radio telescopes based on this concept [59], [60], [61], [62], [63].

In Italy, the Sardinia Array Demonstrator (SAD) is currently under develop-
ment. This project is founded by the Sardinia Regional Government and by the
Italian National Institute for Astrophysics (IRA-INAF), and it is motivated by the
intention to offer a technological and scientific test-bed to gain experiences and prove
crucial concepts, algorithms and techniques for digital beam forming, data acqui-
sition/transmission, calibration, imaging, and RFI mitigation. The project started
in march 2013 and it is expected to be concluded in march 2016. SAD will consist
of the installation of an aperture array constituted by dual-polarized low-frequency
antennas [64]. The SAD antennas will be deployed within the perimeter of the Sar-
dinia Radio Telescope (SRT) site, which is located in the proximity of the town of
San Basilio, 35 km north of the city of Cagliari. The aperture array will be com-
posed of 128 antennas distributed in a 64 m diameter core and in four 15 m diameter
satellite stations, as depicted in Fig. 6.1. Furthermore, given the closeness of the
SRT, it will be possible to attempt join experiments correlating aperture array and

single-dish data.
In this chapter the design of the SAD array element is described. This comes from
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6. Design of a dual-polarization Vivaldi antenna

Figure 6.1: Aerial view of the SRT site showing the locations for the 64 m core and
the four 15 m satellite stations of SAD.

the optimization of the italian Vivaldi antenna prototype v2.0 built by IRA-INAF
in cooperation with the IEIIT-CNR of Torino, which has been developed in the
framework of the Aperture Array Verification Program in the pathway to the SKA
[65], [66]. Although the features of the Vivaldi v2.0 were already close to the goals
required by the SAD project, by studying the RFI environment at the SRT site
it has been discovered that the portion of the radio spectrum best suited for low-
frequency observations is from 250 to 450 MHz, therefore the Vivaldi v3.1, which is
a new prototype optimized for this frequency range, has been developed [67] [68].
In Section 6.2 the cavity-backed Vivaldi antenna concept is introduced starting
from the Vivaldi v2.0. In Section 6.3 the evaluation of the sensitivity is described,
and a comparison of the Vivaldi v2.0 and v3.1 antennas is presented. In Section 6.4
the characterization of the prototype of the Vivaldi v3.1 is presented, discussing the

measured reflection coefficients and radiation patterns.

6.2 Cavity-backed Vivaldi antenna

The Vivaldi v2.0, which is a dual linear polarization Vivaldi antenna backed by a
circular stub, was designed to operate in the [70,450] MHz frequency range; the
prototype of this antenna is shown in Fig. 6.2. The main characteristics of this
antenna are: unbalanced 50 €2 coaxial cable excitation, -10 dB matching, low cross
polarization on the principal axes, absence of bulky dielectric parts or ground planes,

small size, easiness of installation, robustness and affordability in the manufactur-
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6.2. Cavity-backed Vivaldi antenna

Figure 6.2: Prototype of the Vivaldi v2.0 antenna realized by IRA-INAF.

ing process. Although this antenna exhibits several interesting features, a significant
amount of power is radiated in the back direction, causing a reduction of the sensi-
tivity.

The Vivaldi v2.0 can be seen as an open-boundary quad-ridge horn, where the
four ridges are the wings of the Vivaldi. For this reason, the back lobes issue has
been tackled by introducing a field confinement in its rear part, transforming the
open-boundary horn into a TEM horn, as sketched in Fig. 6.3. This requires the
design of a ridge waveguide operating in the required frequency range and of a back
cavity aimed at minimizing the reflection coefficient seen from the coaxial cable that
provides the excitation. Then, the Vivaldi section is joined to the waveguide end.
The final structure consists of a ridge waveguide, a backing cavity, of the radiating

section and of the waveguide to free-space transition.

Although this strategy is very effective, the resulting structure is quite expensive,
due to its manufacturing complexity. To reduce these complications, the cavity-
backed Vivaldi antenna sketched in the right part of Fig. 6.4 has been conceived,
removing the ridge waveguide part: this is a dual-polarization Vivaldi section, where
the four wings are placed on a metal cavity. A comparison of the front-to-back ratios
(FBRs) of the three antennas with different backing structures sketched in Fig. 6.4
is reported in Fig. 6.5; here, the dashed line is related to the stub-backed Vivaldi
(Fig. 6.4, left), the dash-dotted line to the Vivaldi backed by a ground plane (Fig.
6.4, center) and the solid line to the cavity-backed Vivaldi (Fig. 6.4, right). It is
observed that the FBR can not be improved simply by introducing a ground plane,

95



6. Design of a dual-polarization Vivaldi antenna

Figure 6.3: Left: sketch of the Vivaldi v2.0 (open boundary horn). Right: sketch of
a TEM horn.

vw

Figure 6.4: Three Vivaldi sections with different backing structures. Left: stub-

backed Vivaldi antenna; center: ground-plane backed Vivaldi antenna; right: cavity-

backed Vivaldi antenna.

since the ripple is increased without any significant improvement. Instead, the FBR
curve of the cavity-backed Vivaldi is almost monotone, with improved values at
higher frequencies. It is known that a Vivaldi antenna behaves as a dipole for
low frequencies, whereas it works as a tapered slot, where the surface currents are
mainly concentrated in the aperture part, for higher frequencies; to clarify this point
in Fig. 6.6 the surface currents on the cavity-backed Vivaldi antenna are shown at
70 MHz, where the dipole mode is dominant, and at 450 MHz, where the tapered
slot is dominant. The presence of the cavity excites the tapered slot operation mode
more than the dipole one, also at lower frequencies. This is interesting because the
tapered slot is more directive, leading to higher FBR; furthermore, since the ripple
arises from the competition between the two operation modes, if the tapered slot is

dominant, the ripple is reduced.
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Figure 6.5: Front-to-back ratio of Vivaldi antennas with three backing structures.
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Figure 6.6: Simulation of the surface currents on the cavity-backed Vivaldi antenna
at 70 MHz (left) and at 450 MHz (right). At higher frequencies, the tapered-slot

operation mode is apparently excited, whereas at low frequencies currents are spread

on the entire structure.

6.3 Performance characterization

The characterization of the antenna performance is based on the sensitivity param-

eter S, which is defined as the ratio of the element effective area A.g to its noise

temperature Tys:
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where T indicates the observation direction and f is the frequency. The effective area
A is calculated from the radiation patterns, which are obtained using a full-wave

simulator. The system noise temperature can be calculated as the sum of three
contributions:

Tsys(f) = Tant,sky(.f) + Tant,gnd(f) + Trec(f)>

where Tyngsky(f) and Tanggna(f) quantify the noise contributions coming from the
sky and from the ground; the latter contribution is strictly related to the FBR of the
antenna, and it keeps into account the contributions directly coming from ground
and the ones coming from the sky and reflected on the ground. These two quantities
are evaluated by means of the Cortes model, which is a far-field noise model [69];
Aqg is one of the inputs of the model. The measured receiver noise temperature
Trec(f) is approximately equal to 30 K in the entire band.
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Figure 6.7: Noise temperature contributions of the Vivaldi v2.0 and v3.1, for the
bands B; and Bsy; the solid and dashed curves are the ground-noise and sky-noise

contributions respectively, whereas the black dash-dotted curve is the measured
receiver noise contribution.

In Fig. 6.7 the three noise contributions are reported, for the Vivaldi v2.0 and
v3.1, in two sub-bands: B; = [50,250] MHz and By = [250,450] MHz, where B,
is the operative band of the design. The blue curves are associated to the Vivaldi

v2.0, whereas the red ones to the Vivaldi v3.1; the solid and dashed curves are the
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6.4. Prototype of the Vivaldi v3.1

ground-noise and sky-noise contributions, whereas the black dash-dotted curve is
the measured receiver noise contribution. It can be seen that the lower band is sky-
noise dominated, therefore it is understood that an optimization procedure on this
band would be almost ineffective, since the curves associated to the two antennas
are very similar. On the contrary B, contains a transition between the sky-noise and
the receiver-noise domination; in this band the three contributions are of the same
order of magnitude, and a geometry optimization can be performed; the Vivaldi v3.1
is the result of this procedure. It is observed from Fig. 6.7 that the ground-noise
contribution of this antenna, which is strictly related to the FBR, is reduced of
almost 10 K at high frequencies. The sensitivity plots of the Vivaldi v2.0 and v3.1
antennas are compared in Fig. 6.8 for ¥ = 0° and ¥ = 45°, where the performance

improvement of the new antenna is apparent, in particular for low angles.
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Figure 6.8: Sensitivity versus frequency for the Vivaldi v2.0 (left) and v3.1 (right).

6.4 Prototype of the Vivaldi v3.1

In Fig. 6.9 the prototype of the Vivaldi v3.1 is shown; the main dimensions of the
antenna are 1.2 x 1.2 m? footprint and 1.5 m height. Although this prototype is
useful to perform an electromagnetic characterization, it is not completely optimized
under the mechanical point of view; the Vivaldi v3.1 version for the mass production
is currently under development.

In Fig. 6.10 the simulated reflection coefficient (black curve) is compared to the

measured reflection coefficients at the two antenna ports; a good agreement has been
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Figure 6.9: Prototype of the Vivaldi v3.1 on the IEIIT-CNR roof, for the reflection

coefficient measurement.

achieved in the whole band.

The measurement of the radiation pattern of the antenna is not straightforward,
owing to the low operating frequency range (leading to large far-field distance) and
to the dimensions and weight of the antenna. Therefore, it has been performed by
using a novel technique based on an unmanned aerial vehicle (UAV). This consists of
a GNSS-controlled hexacopter capable of flying autonomously for 15 minutes. This
has been equipped with a continuous-wave RF signal generator based on a phase-
locked loop synthesizer, with a dipole antenna. The signal received by the antenna
under test is measured by a spectrum analyzer, and the radiation pattern is obtained
by post-processing the GNSS signals and the acquired RF data. This system allows
the analysis of either the single antenna or of the entire array, simulating the actual

scenario (i.e., the aperture array directed towards the sky) [70], [71].

In Figs. 6.11 and 6.12 the H-plane co-polar and cross-polar measured and sim-
ulated patterns are compared for f = 50 MHz and f = 450 MHz; in Fig. 6.13 the
E-plane co-polar and cross-polar patterns are reported for f = 300 MHz. There
is a reasonable agreement between the simulated and measured co-polar patterns,
but the comparison on the cross-polar is poor. These measurements have been per-
formed with an early-stage version of the measurement system, where the GNSS
measurements of the hexacopter position were not accurate enough; currently, a
differential GNSS receiver has been introduced in the system, leading to much more
accurate position. Moreover, a correction strategy for the orientation angles has
been developed to reduce the errors on both the co-polar pattern symmetry and the

cross-pol levels.
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Figure 6.10: Measured and simulated reflection coefficient of the Vivaldi v3.1.
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Figure 6.11: Measured and simulated H-plane co-polar and cross-polar radiation
patterns of the Vivaldi v3.1, at f = 50 MHz.

6.5 Conclusions

In this chapter the design of the radiating element that will be used in the SAD
project has been described. This is a cavity-backed Vivaldi antenna, whose concept
has been produced starting from an existing design. A benchmark of the sensitivity
of the old and new designs has been performed. A prototype of the antenna has

been built and characterized, leading to satisfying results.
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Figure 6.12: Measured and simulated H-plane co-polar and cross-polar radiation
patterns of the Vivaldi v3.1, at f = 450 MHz.
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Figure 6.13: Measured and simulated F-plane co-polar and cross-polar radiation
patterns of the Vivaldi v3.1, at f = 300 MHz.
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Appendix A

Appendix of “Foundations of the mortar

clement method applied electromagnetic

scattering problems”

A.1 Non-specialized basis functions

The non-specialized basis functions are defined on the parent domain o € [—1, 1] x
[—1, 1]; in this work, Chebyshev polynomials have been adopted as generating func-

tions:

Y (r) = Pu(r(0)) = P&, n) = T.(6)T.(n),

where:

T, (t) = cos(n arccost).

Depending on the application, the spatial domain variable r may span the (z,x)
plane for the periodic structures case, the (z, p) plane for the axisymmetric structures
case, or other possibilities. In the following, r = (z,y).

It is useful to derive the expressions of the derivatives of the basis functions in

the natural domain; this is done by applying the chain rule:

9¢Y _ag a¢ ¢! an
or  0¢ 0z oy ox
967 agP ac  ag? o
dy 06 dy oy dy’

where:
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0¥ dT,() o6 . dTx(n)
TR Tx(n) o =T,(¢) a
where:
dj;;;t) =nU,_1(t),n=1, ...
and:
U () = sin((n + 1) arccos(t)

sin(arccos(t))
The remaining terms, related to the mappings, are discussed in the following sec-

tions.

A.1.1 Bilinear mapping

The bilinear mapping is used to transform the square parent domain into a generic
trapezoid; this can be applied for example to the structure reported in Fig. A.l.
Given (u,v) spanning in the unit square [0, 1] x[0, 1], the bilinear mapping expression

1S:

z(u,v) = (au + b)(cv + D) = acuv + adu + bcv + bd =
= A+ Bu+ Cv+ Duv

y(u,v) = (eu+ f)(gv + h) = equv + ehu + fgu + fh =
=FE+ Fu+ Gv+ Huv.

(A.1)

Let Py, P5, P, Py be the four points of the trapezoid in the spatial domain; then,
Py = (21,01); P2 = (22,92); P3 = (23,93); Py = (24,4). Then:

e the point (0,0) in the parent domain is mapped to Py;
e the point (0,1) in the parent domain is mapped to Ps;
e the point (1,0) in the parent domain is mapped to Ps;
e the point (1,1) in the parent domain is mapped to P;.

By using these four conditions in the first equation of (A.1) the following systems

of equations is derived:

;

T =A

xo=A+ B
23=A+B+C+D
\$4=A+C'
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)

1 @) L@

3)

Figure A.1: Example of domain that can not be mapped into a single reference
domain; the solid lines identify the sides where PEC boundary conditions have to
be enforced; the dashed lines are the access ports; the dotted lines are the common
edges between different patches. In this example, each patch can be mapped to the

parent domain through a bilinear mapping.

n=~F

Yyo=E+ F
ys=E+F+G+H
ys = E+G.

\

By solving these systems, the following expressions are found:

A=mx E=y

B =z — 1y F=y—u

C=x4—x G=ys—u

D = (x3 — x4) + (21 — 22 H = (ys — ya) + (11 — ¥2).

Once that the mapping is known, it is useful to know its derivatives:

ox ox

Oy Oy
2 _F+ H A Hu.
9 + Hv 5 G+ Hu

The derivatives of the inverse mapping can be found, starting from these last ex-

pressions, by inverting the jacobian matrix, defined as:
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o 00
ou Ov
J:
9y Oy
ou Ov
So:
gu Ou dy _Ou
oxr 0Oy 1 o Ov
I = =920y 010
non| EEEE| 0
or Oy wov YT 0w ou

The bilinear mapping transforms the (u,v) unit square into a generic quadrilateral
with straight edges; since all the formulas are referred to the (§,7) square with side

2, the following additional mapping is introduced:

1 1
1 1
025774—5 < =2v—1.
So:
% _on_,
ou  Ov

A.1.2 Gordon-Hall formula

It is possible to map each point of the reference domain o = (§,7), where (£,7) €
[—1,1]x[—1, 1], in a generic quadrilateral in the natural domain r with either straight

or curved edges by using the Gordon-Hall formula [2] [9]:

(@) =15 T (6) + 2 Lms(€)
+25 (mal = 5w - 25 -0 ) +
2 (mat) = ) - 5 )

where 7; is the mapping from the [—1, 1] interval to the curve representing the i-th
edge. If i = 1,3, the parameterization is defined such that, for increasing &, the
curve goes from left to right in the natural domain while, for ¢ = 2,4, to increasing
n corresponds a mapping from bottom to top; this is sketched in Fig. A.2. This
procedure is applied to find the mapping for each j-th patch.
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Figure A.2: Left: reference domain o; right: example of natural domain in the
plane (z, x); each encircled number identifies the i-th edge in the parent and natural
domains; the arrows indicate the direction of the parametric curves of the edges for

increasing £ or 7).

The Gordon-Hall formula can be written in an expanded fashion:

w&m] _1=n [0a(®) , 1+ [as(6)]
y(fﬂ?) 2 yl(g) 2 y3(§)
1-& | |za)| _14mjaa())  1—mn jza(-1)
I Jmm] 2 y4<1>] 2 Lm—w] !
Aln)

Llg [xz(n) 147 m(l)] 1 -1 lm—l)] _
2 | y2(n) 2 |ya(1) 2 |ya(-1) |
B(n)
1 [xm L4y m(&)] Llog A | 14g B
2 yl(g) 2 93(5) 2 Ay(n) 2 By(n)

The derivatives with respect to the reference domain variables are now calculated:

or 1—ndm  1+ndm; 1 1

- 2 o T2 o 2t gBl
o1 1 1-¢OA 1+60B
oy~ et e T gy

where:
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— = —— — —myu(1) + =myu(—1
on an 2774( )+ 27T4( )
— = —— — —my(l) + =ma(—1
on an 27r2( )+ 2772( )
and:
o yi o y;
73 an
Then, the derivatives of the mapping in the natural domain are computed as:
or oy oy [or
ox 1 on o0& o0&

or 6_3:@ — @@ 0x or or

8_y o0& 0dn  On o€ —a—n a_f 8_77

Parameterization of a curved edge

In this section the parameterization shown in Fig. A.3, that is used to model an

edge with starting and ending curved parts with central straight part, is described.

B 0(3)

. R<3> "’

(@4

Figure A.3: Example of curved-straight-curved edge. The numbers in the super-
scripts identify the k-th part of the edge; R is the radius of curvature of the
i-th edge; (xc ), y((; )) are the centers of the circles modeling the edges; 19 2 are the
starting and ending angles of the k-th circle; (xl %, yg 2)) are the starting and ending

points of the straight part.

Let t be the parameter of the curve; then, the lengths of each part of the edge
are:

108



A.1. Non-specialized basis functions

LW = |R1 (19(1) 191)>
L = /(e a4 (7 o
L® = |R®WF — 9]

Then, it is possible to find the extremes, in t, of each sub-interval depending on its

length, according to the following criterium:

=1
)
W _ L
b ==l 2 5o 1o
1)
@ _ L
b =-lt2rm e 1o
LA L 12
) =142 i
IO+ IO+ O
LA 4+ 12
1 =142 i
IO+ IO 1 O
¥ = 41

The expression of the parametric curve is:

zt) + R(l) oS 19(1) 1 <t <tV
xég +R3)cosq9 t()<t<t(3)
Y + RO sin 9V 0 < ¢ < ¢V

y(t) = m(t 0,65y ) 1P <t <t
y& + R®) sin 9@ 10 <t <t
where:
(t,a, B, a,b) b-a (t—a)+
m(t, o, B.a,b) = —a)+a
) ) ) ) /8 _ a

9D = (10, 1D gD D)y

9O = m(t, 17,157, 01, 05).
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The derivatives of this mapping can be immediately computed; given m, the deriva-

tive of the function m, that is:

my = my(a, B,a,b) = o

So, the following expressions are written:

dy®

—RWsiny®W—— ¢ <y <4V

dx(t) 2 2 2
o = gt 2 ) P <<
3)
CR®siny® VT )
1 — 2
dt
d®
R® cos ﬂ(l)d— tM <t <M
dy(t) _ N @)
dr my ()t Y 792) 7 <t<ty,
 dy®
R® cos9® 1 <t <ty
where:
dy™ M )

1 1 1
Tl my (145 90 9y

(3)
dgt = my(t g at2) 19(3) 19(3)

A.2 Asymptotic behavior of the electromagnetic
field at sharp edges

In this appendix a formulation for the numerical determination of the singularity
rate of the electromagnetic field in the proximity of sharp metallic edges based on
azimuthal transmission lines is introduced. The space is divided in several regions,
and the medium that fills the ¢-th region is characterized by its relative dielectric
constant €; and by its relative magnetic permeability p;.

The most suitable coordinate system for the description of this problem is the
cylindrical one: (p, ¢, z). The starting point of the formulation are the Maxwell’s

curl equations:

V xE=—jwuyH
VxH-= jwaiE.

In this formulation, no variation along the z direction is assumed; in other words:
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Figure A.4: Geometry of the problem.

0
51

therefore, these two vector equations are written as six scalar equations, as follows:

=0,

10H .
LoH- jwe B (A.2)
p Op
oY .
~ o :JweiEfp) (A.3)
10(pHYY  10H .
10(pH,") 10H," _ jwe B (A.4)
p  Op p Op
108 Z.
> 0w = —jwpH{ (A.5)
OBy Z.
~ o :—Jw,uiH;) (A.6)
(i) (i)
10(pE 10F .
_(9(0 ® ) __a P :_.]W,U'LHZ(Z) (A?)

p  Op p Op

The components Egi) and H 9) satisfy the Helmholtz equations:

(VZ+EH)ED =0 A8
(Vi +k)HY =0, (A.9)
where:

Since in this formulation the electromagnetic field has no variation along the z

direction, the two differential problems are not coupled; this means that the problem
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in Eﬁi) and the one in H S) can be solved separately; then, two proper expansions
for the unknowns of the problem EY and HY are defined:

EY = i f: P2V, 15)]
HY = ii 1, 1)]

where t; is the j-th eigenvalue of the problem and the functions Vi/j(k)(

I;;.(k)(go, t;) are the k-th coefficients of the radial expansion. In the first expression

¥, tj) and

the coefficient has the physical meaning of a voltage (since an electric field component
is expanded), while in the second case it has the physical meaning of a current (since
a magnetic field component is expanded); the prime apex is related to the fact that
E. is non-vanishing only with TM, modes, while the second apex for I identifies
TE, modes; no coupling between TE, and TM, modes occurs.

The transverse Laplace operator in cylindrical coordinates for a scalar function

¢ can be written as:

V§¢:@+l@+iﬁ

dp*  pOp  Op*0p®
Since the objective is the determination of the singular asymptotic behavior, for
kE > 1 the field expansions are regular; moreover, the lowest value of ¢; is the
singularity rate. So, by writing the transverse Laplace operator of Egi), the following

equations are obtained:

PVi(e,t)) _

VEE&) = (t]>(t] - ]_)th—QX/;;((’D?t]) + tjptj—Q‘/;‘/j(sp7 t]) + ptj_Q a(pQ

0*V.
_ t2 i 42
= p" ( 92 +thi}) :
This is substituted in the Helmholtz equation (A.8), obtaining

92V,
t:—2 ] 2 tj —
o (G ) v =0

The equation above is not complete, because the contributions to the p' coefficient

2 is the written one;

have not been written. However, the only coefficient of p'i~
therefore, to satisfy the Helmholtz equation, the coefficient of p%~2 has to equal

zero; this means that the following equation holds:

62‘/2-/-
W@ZJ + 8V, =0. (A.11)
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Then, by applying the same ideas on the second Helmholtz equation:

271
ij 27
—8g02 +t51; = 0. (A.12)
Since the problems related to the TE, modes and to the TM, modes can be solved
separately, from now on the two formulations will be developed in two different

subsections.

A.2.1 TE, modes

In this section the singularity rate of the electromagnetic field will be evaluated by
solving an eigenvalue problem. From now on, let t = ¢, and I/’ = I/; therefore,
(A.12) can be written as:

17 + 1! = 0.

dp? !
This is a current wave equation, exactly as the one that can be derived from the
telegraphers’ equations eliminating the voltage V/”. It should be remarked that I/

comes from the first term of the radial expansion of H Z(i), therefore:

HD ~ p'T!(p,1).

The solution of the wave equations can be written as the superposition of a progres-

sive and a regressive azimuthal waves:

Il(p,t) = I e + I 7 e = I () + I, ().

This expression can also be used to evaluate the radial component of the electric

field, E[(,i); in fact, by inverting (A.2), the following expression is obtained:

(i)
po_1 1 0" 11 0
P pjwei 0p  plwe; Op

11 0L (1)

t T _ -1+
[P (o, )] = p IS P

This is now written explicitly, using the I}'(¢,t) defined above:

. 1 8[" ,t _ 1 Lo s Lo :
B = pt_ljwa Zégz '~ 4 1jw5. [_Jﬂi»are " ithg eﬂw] -

-1 Jt "t —jte - ity
— |1, ge —ILge .

jwe; 40

Now, let us define Z7/_; as:

Z//

co,i ’
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then, the azimuthal voltage V;” is defined as:

V' (p,t) = ZU; |Ige % — I g e = V" (o) + V'~ (¢),

so, from here, the following expressions are obtained:

E;(;Z) — ptfl‘/i//((pjt%

where V" I" satisfy the following azimuthal telegraphers’ equations:
i i y g

- ez
w b
dr’
Sl
(p I

The parameter t is found as the solution of an eigenvalue problem; therefore, the

reflection coefficient T () is defined as:

V' (p)
Vi (e)
Now some formulas for the computations on I' are recalled; all these formulas are
valid for both TE and TM modes, therefore the apexes will be omitted. It is known

that the formula for the propagation of the reflection coefficient is:

() =

T(p) = F(¢2)e_j2t(¢2—¥71).

Let us assume that in ¢ = B there is a dielectric discontinuity; in ¢ = BT, there is
the medium identified by ¢ = 3; in ¢ = B~, the one identified by ¢ = 2; let Fg be

the Fresnel reflection coefficient of the interface; this can be written as:

Zoo,3 - Zoo,2 €3 — &2
Fp=2x3 =202 _ _ ,
Zoos + Zooo €3+ &2
then:
_ Fp+Tp+
Bm Tt Fpl'p:’

All these formulas are applied to calculate the loop gain (LG) of the transmission
line; this can be used in order to set the eigenvalue problem and find the values of
t related to the free oscillations of the system defined above. The free oscillations
are the ones for which the loop gain has absolute value equal to 1, and round-trip
phase shift RTPS (that is the phase of the LG) multiple of 2.

The problem of the determination of ¢t can be defined as the transmission lines

problem of Figure A.5; in ¢ = A, looking towards left, it is possible to see a short
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A.2. Asymptotic behavior of the electromagnetic field at sharp edges

et

Figure A.5: Transmission line where the loop gain is calculated.

circuit; for the TE, case, where the primary quantity is the current, the boundary

condition that has to be enforced is:

de |4
This means that:
Ty=1.

Instead, the reflection coefficient towards right is calculated as:

[y =Tp-e s,

It is known that the loop gain LG equals:

LG =TT 4.

The absolute value of LG equals 1, since there are no losses; for what concerns the

RTPS:

RTPS = /LG = /T4 + /Tp- — 2tlap.

The term t is the number that identifies the free oscillations of this system; therefore,

it is necessary to find the solutions of the equation

RTPS = j2m,

so, of the equation:

/Tu+ /T —2lap = j2r.

In this equation, 4 is known (defined by PEC boundary condition); éfB— is known
(it can be found by standard transmission line theory, considering at the right end
of the structure a PEC boundary condition); l4p is known; therefore, ¢ is the only

unknown; fixed j = 1, ¢ can be derived from this equation, as:
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1 - .
t= —|/Ty+ /Ty — 2j7r] .
g

Once that t is known, and each reflection coefficient at each dielectric interface is
known from the standard transmission line theory, it is possible to apply the formulas
written above using the ¢ that has been found and so determining also the azimuthal
dependence of the electromagnetic field in the proximity of the sharp edge.

The solution to this problem can be fould by means of a numerical method,
solving RTPS(t) = j2m, for j = 1. The case of a PEC wedge in homogeneous
dielectric is interesting and it can be solved analytically; in this case, Ty = fB— =
—1; the first eigenvalue is for 7 = 0; therefore, from the loop gain equation, the

following relationship is derived:

7r+7r—2tlAB:0:>t:i.
laB

For instance, if 45 = 37“,

s 2

t= =
31 3

this result is known and it confirms the validity of this theory. For what concerns
the azimutal behavior, let us consider a PEC block defined from ¢ = 37” to 27; then,
since ['(¢) = —1 (voltage reflection coefficient)

Ly =1y,

SO:

1) = I3 [e7% + %] o cos(ty).

Therefore, the field component satisfies the following property:

H! o p'~* cos(typ).

A.2.2 TM, modes

Now the problem relative to the TM, modes will be solved by following a procedure
similar to the previous one. In this case, (A.11) can be written as:

0*V/

—— + V= 0.

Oy? '

The following expression can be written:
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EY ~ p'V! (i, 1).
So:

V(o t) = Vi§e % + VIiget = VI (o) + V] ().

By inverting (A.5) the following expression is found:

1L V(e t)
jwps 0

go_ L 9EY 11 9

ty s/
: = ———— [pVi(p,t)] = —p
P piwp; Op p jwit; O [ ]

and then this can be written explicitly, obtaining:

. 1 . .
H ,§Z> = —pi! [—jtv;fge—ﬁ*" + jﬂ/;fo—eﬂtﬂ —

Now, let us define Y7 ; as:

/ —
Yoo,i - )
Wit

and the following expression is written:

Y i [Vige™ = Vige ™) = I (o) + I (¢),

leading to:

HY = p' =T, 1),

where V| I! satisfy the following azimuthal telegraphers equations:

dv’
3 ~ =tz I
N :
dr!
S
(p 9

For the TM, modes formulation the reflection coefficient I () is defined as:

L
Fe) = v+gg

The same considerations can be applied, and then:

1 — —
t= | /Tas /Ty — 2j7r]
2laB
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is the solution of the eigenvalue problem. Let us consider a PEC block defined from
¢ = 2T to 2; then, since I'(¢) = —1 (voltage reflection coefficient)
sza— - 1:0_7

SO:

Vi (p) = V/§ [e7% — eM%] o cos(te).

)

So:

E! o p'~tsin(typ).

A.2.3 Implementation notes

Once that the azimuthal behavior is known, it is necessary to implement it correctly,
in a carthesian reference system. Since all these results are in a cylindrical coordinate
system, the polar-carthesian transformations are now reviewed and applied to the

case study.

Carthesian to cylindrical

Let us define the following mapping:
U = pCcosy
v = psin g,

p=vVu?®+v?

Y= tan™* <2> .
u

Let f be a function of u and v; then, by applying the chain rule:

and the inverse mapping:

of _ [ofou ofev] _of of . of of

p@p_p Oudp Ovdp TPy PP T Py BN T g T ey
and

0_f_8_f@+0_f@__8_fsin + a—fcos ——vg—i-ua—f

dp  Oudp Ovdp Pou "M T Py P = V%, ov’
therefore:
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0 0 0
pa—p*ua—u+1)%
0 0 0
%——0%4—11%.

Cylindrical to carthesian

Now, let us start from f =

f(p,¢); the objective is the determination of the deriva-

tives in the (u,v) plane. Once again, it is possible to start from the chain rule:

of _0fop  0f ¢
ou  Opdu  Opdu
0F _ 0100 01 0¢
ov  9pdv  Opov’

Now, it is necessary to evaluate all these derivatives. The first two terms are found

differentiating p = p(u,v)

and

then:

9p _
ou

and, similarly:

dp u

ou  JuZ+ o2

dp v

W Vo
1 0 <v>_ = v

1+Z—§8u u _1-1-2—2 u? + 0?2’

dp % o
80_1+Z—§_u2+v2'

Now, it is possible to substitute these formulas in the chain rules:

and:

of _of u _Of w
ou  OpvuZt+v2 Opu?+ov?’
of _of v Of uw
v IpuZ+2  Opu 42’

but it is observed that:

u U
——— = — = oS,
vuz+ov2oop 4
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and

) ) 1 vl 1 .
= = —— = —sinyp,
Cr VaEt Vet pp po7

and, similarly:

v . U 1
——u2 o =smy NCRpE T ;cosgp,

so, after a substitution in the chain rule expressions, the following equations are
found:

of of . 10f
% = COSQ08—p — smgp;%
af . of 10f
% = smgoa—p +COSQO;%.

A.2.4 Derivation of the non-azimuthal weight function

The first case study is the following one:

flp.p) =p",
SO:

% = t,ot_l Cos

0

8_£ =tp" tsingp

A.2.5 Derivation of the azimuthal weight function for the
TE. case

If the weighting functions has into account the presence of the azimuthal behavior,

it can be written as:

f(p, o) = p' cos(typ).
So:

of _, i
ou ¥

— 1 (con(tp) cos(sp) + sinfip)sin(t)) =
=tp'tcos[(t —1)y]

cos ¢ cos(tp) + tp' 1 sin(ty) sin(p) =
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af

5 = tp'~1sin p cos(tp) — tp' ! cos psin(ty) =
v

= tp'! (sin(ip) cos(tp) + cos(ip) sin(tp)) =
=tp'tsin[(t —1)¢].

A.2.6 Derivation of the azimuthal weight function for the
TM. case

If the weighting functions has into account the presence of the azimuthal behavior,

it can be written as:

f(p, ) = p'sin(ty),

So:
g =tp" ! cospsin(ty) — tp' ! cos(ty) =
u
— 1" (sin(ti) cos(i) — sin(ip) cos(tp)) =
=tp' " sin[(t — 1)¢]
of . - t—1 _
5y tp'~ " sinpsin(te) + tp'~ cos g cos(ty) =
v

= tp'" (cos(p) cos(ty) + sin(p) sin(ty)) =
— tpcos (¢ — 1)¢].
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Appendix B

Appendix of “Mortar element analysis of

2-D waveguide discontinuities”

B.1 TE. and TM. modes

In this section the expressions of the TE, and TM, modes of a rectangular waveg-
uide are reported from [72]. These expressions are used to derive the LSE® and
LSM®) modes, and to expand the field at the access ports in inhomogeneous E-plane

discontinuities.

e TM, modes; given m and n different from zero:

, 2 m cos <m7r )s' <n7r >
e =—= —x ) sin [ —y
aCrn a b
e = 2_n sin (mwx> cos (mry)
Y b Chn a b
h = 2 n sin (mﬂx> cos (mr )
Yo a b7
2
e on (2 i ().

e TE, modes; excluding the case m =n = 0:
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el = - eZen C’n cos (mx) sin <%y>
mn a’
Em€n .
I (2] en ()
hl =~ Cmn M _ G0 (ma:> cOS (Hy)
a Con a b
v €€ n mm . /nm
hy = b C_mn COS (TI) Sin <Ty) .

Here, a and b are the dimensions of the waveguide on the x and y axes, then
[ b a
Cmn = m2— + TLQ—,
a b

1, n=0
2, n;éO.

and

€ —

B.2 LSE® and LSM® modes

B.2.1 Derivation of LSE®) modes

In this section the expressions of the LSE®) modes are derived by combining the
TE, and TM, ones. From now on, the z subscript is omitted. LSE®) modes have
no x component of the electric field, meaning that:

E,.=0.

The component E, is written as a combination of TE and TM modes:

E.,=E. +E!/=V'e +V"el =

2 m \EmEn M .
_ |y 1"
= |-V aC +V 2 CWJ cos(kyx) sin(k,x),

where:

_mm _nr _ o Je2l 0@ B.1
ko =—  ky=—" Cun=y/m’— 40’7, (B.1)

and V', V" are the TM and TE modal voltages. The condition on FE, is translated

in the following relationship between the modal voltages:
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2 m N Em€En N
. v v =0
a Cmn + b Cmn ’

which means

%  V€mn na
Ve 2 mb

Then, according to (B.1),

na k

-y
mb  k,’

therefore:

Ve w/emen@.

— = B.2
v 2k, (B2)
From here on, the progressive wave case is considered, meaning that:
V// o e—jkzz,
where:
ki =K+ K2+ k2.
So:
1! 1 1 kz 1
I"'=Y_ V"' = Yok—V
ko (B.3)
I'=Y.V' = Y{]k—OV’.

To calculate the proper current combination aimed at obtaining LSE®) modes, (B.3)
are used with (B.2) to calculate:

I kV' ok VBV

I T Ok_zyollz—;vﬂ _EW:

k2 2k,

(B.4)

Equations (B.2) and (B.4) provide the correct combination of TE and TM modes to

obtain LSE®) modes. These expressions are now used to calculate the LSE®) mode
fields.
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Derivation of E,

The component FE, is now written as:

V/
E, = E,+ El = V'd, + V"l = V" {Wegj +eg} -

1 2 n Vo \Jemen, m . B
=V { AT " Cmn:| sin(k,x) cos(kyy) =

_ [2L_vm’f_ L VemEn M

b0 2 " Cmn:| sin(k,z) cos(kyy) =

/—m - /{32 + k2
=-V" 7r€C ‘ xk Y sin(kyx) cos(kyy), (B.5)

where for the last step (B.1) was used.

Derivation of H,

The component H, is now written as:

H,=H,+H]=1h+1"0, =1" {ilh’ + hg} =

I// z
—I”{ 2n I’ N VEmEn M

_ on k_g,/emen@_l_ VE€mEn M
WO k2 2 ke a Com

} sin (k) cos(kyy) =

27.2 | 1.27.2
oV EmEn koky +kIED
=7 o e sin(k,x) cos(kyy). (B.6)

Derivation of H,

The component H, is now written as:

I/
Hy = Hy+ B! = I'H, + 1)) = I {ﬁh; ¥ h;;] -

_ g 2m k3 \/€mén Ky N €Em€n N

2

] cos(ky ) sin(kyy) =

TCmn | K2
e 12 _ 12
_ N mEny b — K cos(kyx) sin(kyy). (B.7)

TCmn 0 k2
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Derivation of F,

The field component E, may be written as:

b, = IZC’,o e,
where:
VLR
¢ = (),
and

O(z,y) = \/% sin(k,x) cos(kyy).

Therefore, by using (B.3) and (B.4):

//I\/m
B TR S

I,,k‘Qw/emenk VE:+Elk, ke & -
22 ky k. ke O

I//kO k V k2 + k2 \/ €’rnen 2
k2 k, ko

\ /k2 + k7
—il"kg Z by Emen sin(k,x) sin(k,y). (B.8)

Sln(k: x)sin(kyy) =

Derivation of H.,

The field component H, is now written as:

H,=V"Y'h!
where:
h; = —j—wm(x,y)
and:
U(z,y) = \/?cos(kxx) cos(kyy).
Therefore:
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cos(kyx) cos(kyy) =

H, JV” Y kQ + k2 k. [eémén

k;g ab

\ /k2 + k2 ]
= —jY,V” ”2 Y EZZ" cos(kz) cos(kyy). (B.9)
0

B.2.2 Normalization

In the previous section the expressions of the non-vanishing field components have
been derived. Now, a procedure aimed at normalizing these quantities is described.

The field power is calculated as the flux of the Poynting vector:

b pra
= / / (E x H") -zdz dy.
o Jo

Indeed, E and H are transverse fields, since we are working on mode functions. In

this situation, since F, = 0, we have:

E=Ey+Ez
H=HX+H,y+ H.z.

So:
(ExH") -z = [(Ey§ + E.z) x (H,X + Hy§ + H,z)" |-z =
= —E,H;
therefore:

b a
:/ / (—E,H;)dzdy.
o Jo

Since power depends only on E, and H,, the normalized functions e and h¥ are

defined starting from these components, as follows:

E,=VEeP (B.10)
H, =I"h", (B.11)

where:

b pra
- / / eErP drdy =1, (B.12)
o Jo
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and

ef = —h¥. (B.13)

If these two normalization criteria are applied, the flux is only related tot he nor-

malized modal voltage and current, since:

b a b a
P :/ / (—=E,H})drdy = —VEIE*/ / eEhFr drdy =
0 0 0 0

b pa
= VEIE/ / |e®|* dedy = VETZ, (B.14)
0 JO
and
E, V*
E Yy _

From the previous section it has been shown that:

E, = — A, sin(k,x) cos(k,y) V"
H, = A, sin(k,x) cos(kyy)I”,

where:

4 - V/EmEn k:f/ + k2

= B.1
Y ﬂCmn ij ( 6)
VemEn K2k + E2K?
A, = Y . (B.17)
TCmn k. k2

Normalization is performed by defining two constants o, and «, such that:

"
E, = (—A,aysin(k,x) cos(k,y)) vz
;g Y
VE
[//
H, = (Ayay sin(k,x) cos(kyy)) — .
e ~~
IE

These constants are now calculated using conditions (B.12) and (B.13). First:

b a b a
P = / / E,H;dxdy = VE[E*AxAyOszéy/ / sin®(k,z) cos®(k,y) dr dy = 1.
o Jo o Jo
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Focusing on the integral,

b pa a b
b
// sin’(k,z) cos?(k,y) dxdy:/ sin?(k,) dx/ COSQ(kyy)dy:a—.
0 Jo 0 0 2e,

Indeed, this integral is non-zero only if m > 1. So, according to (B.12),

b
AxAyozxay;— =1,
€n
meaning that:
26,
2Oy ————. B.18
WY, A ab (B.18)
Then, from (B.13),
E E
"] = [n"]
meaning that:
Aoy, = Azay,
or:
a, A,
— == B.19
2 (B.19)
Equations (B.18) and (B.19) are solved together, obtaining:
5 Ay 2¢,,
o — =
TA, A Aab’
which is:
1 2€,
Similarly,
1 /2
= /==, B.21
Oéy Ay ab ( )

Calculation of the LSE® characteristic impedance

According to (B.15), the characteristic impedance for LSE®) modes is defined as:

7=V
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Now its explicit expression is derived.

g Ve _wV o,
< JE i—'; a, I" o, ™
1 2
_ Az ab A ﬂZ// ﬂZ @
2 e AT A "k
y a
ki+ky 2(1.2 2
B~ (R~ R)(E2+ )
_ Rk Kok
K2+ k2% k2R

Calculation of the normalized F, and H, components

From (B.10) the expression of E,, is.

E,=VFe? = — A a, sin(k,) cos(k,y)VE =

2€, .
— _\/%Sln(kxl') COS(kZ/y) Ve

. J/
-~

eE

Similarly:

H, = I"h* = A, sin(k,x) cos(kyy) ¥ =

26, .
=4/ - sin(k,) cos(k,y) I”.

- v
g

hE

Calculation of the normalized H, component

From (B.7), for m > 1, H, is obtained as:

(B.22)

(B.23)

(B.24)
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\/E kykz — kyktz)
7Chn k2
I\ KR
a” TChmn Ry k2

2en TCyn k2kaky (K2 + K2) /26,

H,=1" cos(kzx) sin(kyy) =

cos(kyx) sin(kyy) =

S k.x)sin(k,y) =
b /26, R2(RER2 1 R2R2) iy, SR ®) S10 ()
2¢ ik, (k2 + k2)
=I5 /= T kyx)sin(k,y) =
ab TR — k2 — 12) 1 ke oS at) sinlky)
2¢, k.k .
= —IF T _3;{2 cos(kyx) sin(kyy) =
0 T
2¢,, ki.k .
= _JF — T +1”;€2 cos(k,2) sin(kyy). (B.25)
y z

It is remarked that, if n = 0, H, = 0; indeed,

Calculation of the normalized E, component

From (B.8), for m > 1, E, is obtained as:

,/kQ—i—k’Z /2
E, I”koZok ﬂsm kyx) sin(kyy) =

J?

k, \/k2+k2 [2€,
= —j[E/{IOZOOzx ism k.x)sin(k,y) =

I

— —jI"kyZ Qﬁ”Cmn kb vk’2 [
"NV ab e, (k3 — k2)(K2 + k2)

2¢,, ky

ab (kg — k2)\/k2 + k2

sin(k,x) sin(k,z) =

= —jkoZoIE7C,p,

sin(k,x) sin(k,y).

Recalling (B.1),

7Cmn _ m2m2 N n2r2 _ 1 K24 k2
ab a3b ab®  \/ab v

This is substituted in the previous expression, obtaining:

2¢, ky
ab k2 + k;

E, = —jkoZoI" sin(k,x) sin(k,y). (B.26)

Now, recalling (B.22), this can be re-written multiplying and dividing times k,:
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k E 2611 kOkZZO . .
E, = —Jk—ZI HE/@ e sin(k,z) sin(k,y) =

. ky [2€, .
= —jzh I k_Z” - sin(k,x) sin(k,y) . (B.27)

-~

E
z

€

Calculation of the normalized H, component

From (B.9) H. is obtained, for m > 1, as:

JETR 3
H, = —ijV”% % cos(kyx) cos(kyy) =

VR |26,
= —jYOVank—y &Lcos(k:xx) cos(kyy) =
0
. |26, ks TCmn 26n\/k52+k’2

]{72 + k?2 vV 2617, ]{ZO
2¢,, k.

= —jVEY] b ke “ cos(k,x) cos(kyy).

cos(k,x) cos(kyy) =

This equation is now multiplied and divided times y s to make the LSE(® modal

admittance appear:

[2¢, ko by + K2k
H, = —jVEYy | == “— cos(k,x) cos(k,y) =
abke k. kZ+K? Y

2
—jVEYE kk kk \/% cos(kyx) cos(kyy) . (B.28)

[ J/
-~

h%

B.2.3 Summary of LSE®) mode functions

In the previous sections, the following LSE®) mode functions have been derived:
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= n(k,
\/ = z) cos(kyy)
—- sin(k,
\/ " sin(k,x) cos(kyy)

2€n k.
hy = - — P —|—Z;<; cos(kx) sin(kyy)
ky [2€, .
el = k_z % sin(k,x) sin(k,y)

k.k. 2¢,,
hE = e \/ b cos(kyx) cos(kyy).

B.2.4 Derivation of LSM©®) modes

In this section the expressions of the LSM®) modes are derived. In this case, the

combination of TM and TE modes should satisfy the following relationship:

where:

H,=H,+H' =T, +I"h! =

2n Vem€n m | .
[/men + 1" W O sin(k,z) cos(kyy) = 0.

This is satisfied if:

I 2n +],,\/emen m 0,

bConn, a Cun
SO:
I _ Em€mb
I a 2n
Since:
mb  ky
na k,’
I €m€n ks
— = — —. B.29
I 2k ( )

From now on, a progressive wave is considered, and (B.3) still holds. This is used
with (B.29) to calculate the proper voltage combination aimed at obtaining LSM®)

modes:
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v/ ko I ke I k2T

v T T A s T RT
z Do Y Emn, (B.30)

Kk, 2

Equations (B.29) and (B.30) provide the correct combination of TE and TM modes
to obtain LSM®) modes. Now these expressions are used to calculate the non-
vanishing LSM®) mode fields.

Derivation of F,

The component F, is now written as:

V/
s /BRI "n.no__ s / ni _
Ey—Ey+Ey—Vey+V y—V {W6y+ey}—

]{?2 kr m n2 m-n 1
_ {_Z_w/e €2 n EmEn M ]sm(kmx)COS(kyy) =

kg k'y 2 b Cmn a Cmn
m€n k?

- V"WZJE {F’f - k} sin(k,z) cos(kyy) =
mn 0

Vemen , kK2 —k2 .
=V o ky B2 0 sin(k, ) cos(kyy). (B.31)

Derivation of H,

The component H, is now written as:

I// Yy

\/ EmEn kx 2m \/emen b :
- I”{ 2 hyaCpy b Cmn} costho) sinly) =

I/
H,=H,+H! =TIl + "0 =1" {—h’ + h;’} =

2
_ I,,_VEmEn {@ + k:y] cos(kyx) sin(kyy) =

TCmn | ky
e k2 + /{2
=1 ; GC' ‘ xk; Y cos(kyx) sin(kyy). (B.32)
mn Y

Derivation of FE,

The component F, is now written as:
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V/
E,=E +E!'=V'e +V"el =V" [Vﬁegﬁ—e } =
k2 ky /€m€n 2 m €Em€n N
|tz ey Tmtn 2 men kyx)sin(k,y) =
{kg Fy 2 aCun b Cmn] cos(huz) sinkyy)

/—m ” /{32 ]{?2
VA [ + ky] cos(kyx) sin(kyy) =

TCmn | k2 k
Jemen K22 + K2R3
=V’ Wé - 2 k2 Y0 cos(kypr) sin(kyy). (B.33)
mn yko

Derivation of F,

The component F, is now written as:

B = I'Z¢,
where:
=V gy
and
O(z,y) = \/% sin(k,x) sin(k,y).
Therefore:

TR 2

E. = ]u k. ab sin(h,z)sin(kyy) =
- Zéoz 3 kz msm(km b =
emen \/ Kzt k;
k2 + k2 k:
—iZ,I" €m€n \/T sin(k,z) sin(k,y). (B.34)
o ky

Derivation of H,

The component H, is now written as:

H V”Y// h/l

ooz

where:
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z kz ('ruy)7

and

U(z,y) = 62;" cos(kyx) cos(kyy).

Therefore:

VEI+E:
H, = —jY,V" 9;{; Y EZZ” cos(k,x) cos(kyy). (B.35)
0

B.2.5 Normalization

Just like in the previous case,
b a
P :/ / (E x H") - zdx dy,
0o Jo

E=EX+Ey+E.zZ, H=Hy+ H.z

where, in this case,

So:

(Ex HY) -2 = [(B,X + E,3 + E.2) x (H,3 + H.3)"] =
— E,H.

Since power depends only on FE, and H,, the normalized functions e’ and h¥ are

defined starting from these components:

E, =Vl

H, = I"p",
where:

b a
/ / e dz dy = 1,
0o Jo
and
el = pt,

By this way,
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szH]H*’
and;
gH _ & — V_H
©~ H, IH

From the previous section, it has been shown that:

E, = Ay cos(kyx) sin(kyy) V"
H, = A, cos(k,x) sin(k,y)I",

where:

s Vemen K22 + K2kG
R TN, ky k2
P femen k2 + K

Y mCon k,

(B.36)

(B.37)

(B.38)

Normalization is performed by defining the two constants a, and o, such that:

V//

E, = A,a, cos(kyz) sin(kyy) —

N S ax

el

VH

I'//
H, = A,ay cos(k,x)sin(k,y) — .
B N

IH

Using similar steps to the LSE®) case, for m > 1,

1 2¢,
Qy = A_z s
12,
oy = A_y b

Calculation of the LSM® characteristic impedance

From (B.36),

OO_IH7
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therefore:
H ‘a/_: Qy v AV
K2K24+k2K3
_Ay oo Oszy_ Ok:z k%kﬁ — Okz k%(kjg—{—kg) =
ky + k2
= Rk 2o B.39
kok. " (B.39)

Calculation of the normalized E, and H, components

From (B.33), the following expression is written:

E, = Ay, cos(k,) sin(k,y) VY =

=1/ 2% cos(k,x) sin(k,y) V. (B.40)
a

N
-~
eH

Similarly, from (B.32):

H, = A,a, cos(k,x)sin(k,y) "

2
= /ig cos(ky) sin(kyy) I, (B.41)
a

NS
NV
hH

Calculation of the normalized E, component

From (B.31), for m > 1, the following expression is written:

v/ 2 k2 — k2

= WCE" - - 0 sin(k,) cos(k,y) =
mn 0

V2, kitky
Oy ks sin(k,x) cos(k,y) =

7Cm k2 v
_ —VH 2ﬂTromn

ab /2e, (k2 + k:g)(k; +k2) K2

L,

—_yH

keohiykd k3 + k) /26,
v v0 SR CGn sin(k,x) cos(kyy) =
m mn

2¢,, k. k
=V 72 2V _gin(k, k,y). B.42
ab k:g + kg Sln( .T) COS( yy> ( )
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Calculation of the normalized E, component

From (B.34), the following expression is written:

[26, /K2 +E2 K
E, =jZ,I" %%k_x sin(k,x) sin(kyy) =
a 0 Yy
[2¢, /K2 + K2 K,
=jZyl"a, %k—oy— sin(k,x) sin(kyy) =
ke /K2 + K

— 2,1 e

ky

ab k2+k2k

2¢,, k,

= jZo I | = sin(k,x) sin(k,y) =

ab ko

koko K2+ K2

E k:2 sin(k,z) sin(k‘yy)) :

Y sin(k,x) sin(k,y) =

sin(k,z) sin(kyy) =

Calculation of the normalized H, component

From (B.35), the following expression is written:

VEZ+E (26,
H,= —jY[)V”k—Oy % cos(kzx) cos(kyy) =
VEZ+E2 [2¢,
= —jYOVHozzk—Oy % cos(k,x) cos(kyy) =

-~

el

C k, k2
::_;}/‘/H' 9 nﬂ mn yho
PN T R+ ) (k2 + )
. 2€n k ko
= —jY, v Ek’i : iz cos(kyx) cos(kyy) =
2e, k
— _syHyH Y
=Y,V Vb i, cos(k,x) cos(kyyz.
NG

z

(B.43)

cos(kyx) cos(kyy) =

(B.44)
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B.2.6 Summary of LSM® mode functions
2
el =efl =/ ﬂcos(]{:;,;x)sin(k‘yy)
ab
RH = pt = Uzﬂcos(k: x) sin(k,y)
Y ab ‘ Y
2e¢, kik
H n x .
e, =—1/ - = +23 sin(k,z) cos(kyy)
k.k
e = - 2 sin(k,z) sin(k,y)
k2 + k2 Y
2e, k
H_ |2 hy
h, = % cos(k,x) cos(kyy).

z

B.3 Field representation for F-plane and H-plane

waveguide discontinuities

In this section the equations used to describe the electromagnetic behavior of 2-D

waveguide discontinuities are derived starting from the space-frequency Maxwell’s

curl equations:

{

V x E(r,w) = —jwupH(r,w)
V x H(r,w) = jwueE(r,w).

These equations are now written in cartesian coordinates; for the sake of compact-

ness, from here on the dependence on space and frequency is omitted:

O,
dy
oL,

0z
O0E,

Or
OH,
dy
0H,

0z
0H,

ox

0E,
0z
OF,
C Ox
OF,
_ 5
0H,
0z
0H,
O
0H,
_ 5

_jw,uHa:

—jwut,

= jwek,

= jwe by

= jwel,.

The structures that are analyzed in this chapter are translationally symmetric along

x; for this reason, the x dependence of the field in the junction is the same as the
incident field one, that is assumed to be a LSE®) or LSM®) mode. Therefore:
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.0 o () 51,5 ()
a

a
E(‘I7 Y, Z) - EEJ:) sin (mx> + ﬁEz COS <mx> ;
a a

where a is the dimension of the device along x. Let k, be defined as:

oo mm
X a .
Maxwell’s equations are now re-written keeping into account this field dependence,
obtaining:
OF,
—Zsinkyr — —Zsink,x = —jkZH, sink,x
oy z
OF, .
5. cos kv — kI, cos kyx = —jkZ H, cos ko
z
OF, .
ke By cos ko — B cosk,xr = —jkZH, cosk,x
Y
OH, 0H .
cos kyx — —Y cos kyx = jkY E, cos kyx
dy 0z
0H, . ) . .
5 sin kyx + kyH, sin k,x = jkY E, sin k,x
z
0H, . . .
— kyH,sin ko — e sink,r = jkY E,sink,x,
Y
where:

7=/ k = wy/le.
3

Then, all the x dependences simplify, leading to:

aaiz — % — —jkZH, (B.45)
aab;m —k,E. = —jkZH, (B.46)
k.E, — aa—% = —jkZH, (B.47)
aa}gjz — % = jkYE, (B.48)
a;z * +k.H, =jkYE, (B.49)
— k,H, — 85? = jkYE,. (B.50)

In the following subsections, the field components E,, H,, ., H, will be expressed
as functions of the derivatives of the E, and H, components, which are used as

Hertz potentials of this formulation.
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Derivation of F,

From (B.46) and (B.50), the following expression is derived:

1 OH,
H,= —— |ikYE
YTk, [‘]k o dy }
1 [0E,
H, = ——— — k. E.|.
Y jkz{az o ]

So, by equating these two expressions, the following equation leads:

oE 0H,
—ky—— + k2E, = K*E, — jkZ—=
0z TR . oy’
which becomes:
0H oE
b, = ikZ—= — kp—=
k2 — k2 {’ dy 0z }

Derivation of H,

The expressions of E, are derived from (B.47) and (B.49):

1 [0H,
YU 5kY | 02

Fha

1 OE,
Ey= {—ijHZ +%, } .

These two expressions are equated, leading to

OE, 0H,

ikY K*H, =k, kiH,
J ay + 92 + Ry H,
which becomes:
1 oH oF
H, = k,—= — kY —= .
k? — k2 [ FEE Jy }

Derivation of F,

The expressions of H, are derived from (B.47) and (B.49):

1 15J3)
- |pp Y=
: ij{xy 5@/}
1 0H.
H,=— |jkYE, — z.
- k’z[‘] Y 0z}
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These two expressions are equated, leading to

0H, oE,
KE, +ikZ7—= = k*E, — k,——
v+ 0z vy oy’
which becomes:
1 OF 0H
E,=—— |-k, — —jkz—=
VTR | ey e

Derivation of H,

The expressions of E, are derived from (B.46) and (B.50):

These two expressions are equated, leading to

OF OH.
kY —2 — k*H, = —k*H, — k,—~
J Oz Y z7Y ay )
which leads to:
1 oFE 0H
H, = kY — + k,——1| .
VT e Ty,

Resume of the expressions of the field components

The expressions derived in the previous subsections are now summarized:

= - 2 _k’”aa% _M%
B = e W2~ b
H, = o ! = _jkYaix +k:wa£x
e g [ B

(B.51)
(B.52)
(B.53)

(B.54)
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B.3.1 Formulation of the internal BVP: E-plane devices

Considering (B.45) and (B.48), the weak formulation is now built as it follows:

I -
e

where the test functions vy

] W qz de = —JkZ/ H, v(h)* dzdz

} dzdx—Jk:Y//Ev *dzdx
b

) and v belong to the following function spaces:

(h

v aly® e N, o® e cO(x) ol gp € LA(X\ )
ro rr " ox 0z ’

o 8 L0 en, o e 0oy, 2 2 s ory oI =0
- r ) ! r ! ax’ 82’ 77T lypEC ’

Both V® and V() contain continuous functions with square-integrable derivatives;
additionally, the functions in V(®) are further specialized to satisfy the homogeneous
Dirichlet boundary condition on ypgc. Then, the following vector theorem is applied

to the weak-formulated equations:

//{ 1fdd //{yﬁz aflddwy{(fA)-ds

Focusing on the first equation, the following expression is obtained:

7 [[ mapraza - [[ 5.

The unknowns FE,, H, are represented using the following expansions:

(%}ﬁh 8 () .
E, 5 dzdx = ]{(EE Ju™*) . ds
v

(LHS)™ = (RHS)™.  (B.55)

N®
2) = D a2, y) (8.56)
c=1
f
2,y) = Yl (z,y), (B.57)
c=1
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where ut? = v ™ = ™. Equations (B.51), (B.52) are then substituted in
(B.55), leading to:

f
(LHS)gh) =jkZ Z ) // uMo®™* dz do+
b

auc 8@,«
dzdz+
/2 dy Oy

k: f au(e) 8 (h)*
x ( C
+ 72 ;cc // 9 oy dzdz+

f<C) B (e)a (h)
k u o
_ z (e) ¢ " dzd
k2—l<:§;cc //2 gy 9z
N®™

: (h) o (h)*
jkZ (1) // Jue’ Ouy
dzdzx.
k2—k2;% 5 0z 0z =
Then, after some arrangement, the following expression is obtained.
(LHS)™ = JkZZ o / / ™" dz da+
7 Ny () gy, (1 RPNOR
B J Z (h) // Oue ' Ov n Ouc ' Ovp dz dat
Jdy 0Oy 0z 0z

N©
Z o / / oul® ou™* B ou'® o s di
k2 oy 0z 0z Oy '

By defining:

(h))rc = // U‘(:h)'UT(,h)* dzdz
(h) o (h)« (h) o (h)«
(K™),, / / 0u vl + Ouc_ Ovr dzdzx
dy 0Oy 0z 0z

8u(e) v 8u ouh
L(h) // C T C T
oy 0z 0z Oy dz dz,

it is possible to write compactly the equation as:
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ke o (o JkZ
'%ﬂ—@LUCU+k%—@

— AMO) O 4 A (0

(LHS)\" =

[(/{;2 _ ki)M(h) _ K(h)} c —

With similar steps, by defining the following matrices:

(M©),, = // u @ dz dz
by

04’ 00l gul® gyl
K(e) = ﬂ c r c T
(K*) N ary + | deda

[ o (0) 5 () M) 5, ()
(L(e))rc _ // auc avr _ auc avr dz dx7
| Oy 0z 0z Oy

the remaining equation is written as:

kY
k2 - R2
_ ACO) ) 4 Aleh) o)

(LHS)\” =

[(kQ _ ki)M(e) _ K(e)] c® 1 L©® c® —

Formulation of the continuity equations

In this section the guidelines for the derivation of the projection matrix elements
related to the continuity equations at the access ports are reported, to complete the
formulation of the scattering problem. The scalar products used in this context are

defined, at the k-th access port, as:

pk)

a *

@b =5 [ aG) e
0

Continuity of the electric field

The electric field continuity equation at the k-th access port is:
where:

Then, recalling (B.51):
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N
(B9, ) =39 (] )
c=1

So, the following matrix elements are defined:

;

(C) e = (ul?)] g e9)

au(e)
H(ek) .= ¢ ,e(k)
=Zwg

ou
(K(h’k))qc - ) e(’,c )
0z ) v

and it is possible to write the projection term of the equation in matrix form as:

\

cleh _ Ko pgen| oo K2 o m
k? — k3 k? — k3 (B.59)

T,ge’e)c(e) + T,(f’h)c(h).
Continuity of the magnetic field

The magnetic field continuity equation at the k-th access port is:

where:

Then, recalling (B.53):
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L ;) ou™
r7(k EY\ _ T h Uc
(0 1) =g 2 <8—y

c=1

N(C)

. (©
RY S o [ Oue (k)
c= Z2=2wg

N

f
r7(k k _ h h k
<Hg§ )’ h§?73> — Z_; Cg ) <U,£ )‘Z:Z‘(ﬂkg) 7h:(z:,(3> .

So, the following matrix elements are defined:

(

(C™9)ge = (u]_0 . 1)
o
(H(h:k)) .= . h k)
! W | _w (B.60)
ou
(K(&k))qc = 7h ]f )
\ 0 | M

and it is possible to write the projection term of the equation in matrix form as:
jkY

L2 _ k2

T,(Ch’e)c(e) + T,ih’h)c(h).

Kl | [Cw,k) n LH(M)} )

k? — k3 (B.61)

B.3.2 Formulation of the internal BVP: homogeneous F-

plane devices

In this section the formulation of the differential problem for E-plane devices filled
with homogeneous dielectric is reported. Assuming that the exciting field of the
structure is given by a combination of LSESZ) modes and that the zy section of
the structure is filled with homogeneous dielectric, £, = 0 in every point of the

structure. In this case, the vector problem is reduced to a scalar one characterized
by (B.45), (B.51), (B.52), here reported with E, = 0:

0E. OB,
Y~ ikZH,
ay o0z )
_ —jkZ OH,
Ey= k? — k2 0z
ikZ OH,
E, = )
k? — k2 Oy
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A weak differential problem is now built by testing the first equation on functions

{vﬁh)} defined in the previous section:

A

The Stokes theorem is now appled to integrate by parts this equation, leading to:

7 [[ mapraza- [[ 6.

By substituting the expressions of the components in this equation, the left-hand

] W qz de = —Jk:Z/ H, v(h)* dzdz.

Y0z

NOE ()
- FE Our ] dzdx = }[(ng)v,(qh)*) -ds
y

(LHS)” = (RHS)"
side term is written as:

(LHS)™ = jkz { / HyoM* dz da+
X

/ / 1 [0H, 0™ | o, doM* d
s k2—k2| 0y Oy 0z 0z e

The unknown H, is represented as in (B.56):

therefore,

f
jkZ Z o {// uMo™* dz dz+
b

B 1 / / Ough) avﬁh)* N 8uc 0% &o da
k2—k2 )]s | Oy Oy 0z 0z '

For what concerns the right-hand side line integrals, they are treated as described

in Section 1.2, where PEC is used to fill the zero-field regions, to eliminate the
contributions of the electric current densities. According to this formulation, the

line integrals are written in matrix form as follows:

p(k)

BO9), = [y
0

(k)

2=2wg

So, the discretized equation is compactly written in matrix form as:
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AlD) 1) — Bh25@) _ By

where:

and:

M® = / / uMo™* dz dz
b

(h) 5, (h)* (h) 5, (h)*
K(h) _ // auc 8Ur 4 auc 8% dz dx
s | Oy Oy 0z 0z

Formulation of the continuity equations

The electric field continuity is automatically satisfied by the choice of the magnetic
current densities at the access ports, as discussed in Chapter 1; therefore, to complete
the formulation of the problem the continuity of the tangent magnetic field continuity
has to be enforced. Since H; = XH,, the continuity condition that should be

enforced is:

which is written explicitly as:

a p(k) a £ p(k)
77(k) 7, (k)* o h 7k k)
S A= 5> [T Antyay,

so, the right-hand side of this condition is written as:

N
a £ pk)
B30 [ty ay = o e,
c=0 0
and so:
Tl(ch) — C(h’k),
where:

p(k)
a *
=5 [ unyay
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B.3.3 Formulation of the internal BVP: H-plane devices

Assuming that the incident field is a combination of LSM(()? modes, H, = 0 in
every point of the structure, independently on the presence of non-homogeneous
dielectrics; indeed, the field does not have any variation along x, therefore no mode
coupling may occur. In this case, the problem is scalar, and it is characterized by
(B.48), (B.53), (B.54), here reported for &, = 0:

A -
1 9E,
v _jk_Z 0z
1 0E,
FikZ oy

A weak differential problem is now built by projecting the first equation on functions

{v,(,e)} belonging to the function space V(¢ defined as in the previous section:

e)x (e)*
iky / / E©* s do — / / B2 g9 | qade - 7{ (HP©") . ds
bj b Ay 0z g

(LHS)'® = (RHS)*.

So, by substituting the expressions of the components in this equation, the left-hand

side term is written as:

(LHS)' = —jky { / / E 09" dz dz+
X

1 |0E, ov*  OE, ov'®*
— / / yE) 08, v Y dzdzx ;.
by

oy 0Oy * 0z 0z
The unknown E, is represented as in (B.56); therefore,

N<C>

f
—jkY Z ) {// ul®vO* dz da+
c=1 2

L / / i N ol vl dr di
k2 )]s | Oy Oy 0z 0z '

For what concerns the right-hand side line integrals, they are treated as described

in Section 1.2, where PMC is used to fill the zero-field regions, to eliminate the
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B.3. Field representation for E-plane and H-plane waveguide discontinuities

contributions of the magnetic current densities. According to this formulation, the

line integrals are written in matrix form as follows:

p(k)

B9, = [ nBe|ay
0

(k)

2=Zwg

So, the discretized equation is compactly written in matrix form as:

A(e,e) C(e) _ B(e,2)i(2) _ B(e,l)i(l)

Y

where:

e,e : € 1 [S]
A(’):—Jk‘Y[M()—ﬁK()},

and:

M©) = // ul®vO* dz dz
by

au(e) 81}(6)* au(e) av(e)*
K(e) _ // c T 4 T d d
| Oy Oy + Jz 0z =

Formulation of the continuity equations

The continuity of the magnetic field is automatically satisfied by the choice of the
electric current densities at the access ports, as discussed in Chapter 1; therefore,
to complete the formulation of the problem the continuity of the tangent magnetic
field has to be enforced. Since E; = XE,, the continuity condition that should be

enforced is:

<E;’“), ei’f§> _ <Exk), ex'f3> ,

which is written explicitly as:

so, the right-hand side of this condition is written as:

N b(k)
a € € * € €
5Zc§)/o WOl dy = COP o),
c=0

and so:
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where:
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Appendix C

Appendix of “Mortar element analysis of

2-D periodic structures”

C.1 Floquet mode functions

In this section the expressions of the Floquet modes used to represent the electro-
magnetic field in a phase-shift wall waveguide are derived. The potential functions
O(z,y) and ¥(x,y) relative to TM and TE modes satisfy the Helmholtz equation:

Vi®(z,y) + k®(r,y) =0

The free-space solutions of these equations are [10, Chap. 3]:

U(x,y) = Ae T ikuy
O(z,y) = Be kareikyy

where k,, k, € R. Now, the free space is divided in sections parallel to y and distant

a; then:

U(x + a,y) = U(z,y)e? = AeFereihuyeio
®(z + a,y) = (z,y)eI? = Be IF=Te ivlei?,

This is a pseudo-periodicity condition with a phase shift ¢. On the other hand:

Uz + a,y) = Ae h=(@ta)omikyyo=io
O(x + a,y) = Be Heleta)o-ike=io,
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So, by equating the two last expressions, the following expressions are obtained:

A eikato—ikyyo—i¢ — A o—ike(a+a) g—ikyyo—ie

B e*jkzme*jkyyefﬂ) =B e*jkw(fEJra)e*jkyye*j(ﬁ_
From here, the following phase equation is found:

kyx + kya = ky,x 4+ ¢ + 2mm,

meaning that:

2
ky = by = m— + O 0,149,
a a
In other words, k, belongs to a discrete set. The potential functions ® are now

normalized:

| P(x,y)||, =1 :>/ 1@ dz = Az/ do = A%a =1,
0 0
leading to:

A= L;
Vva
so, the potential functions can be written as:
S, (x,y) = V(z,y) = Le_j’7‘3“*”“7’16_‘%?/y.
Va
The expression of the phase-shift ¢ introduced by the unit cell is now derived. By
assuming that the structure is excited by a plane wave identified by its wavevector

k(me) = ({9 o) o)) ohere:
(k(ine), k;gnc), k{n9)) = o (sin o cos @, sin 9 sin @, cos ).
So, kS s found as
kUn®) — ko sin o) cos ¢,
where ¥ and ¢ are the zenith and azimuth incidence angles of the plane wave.

Therefore, since the components of k()

km _ k;(cinC)
ky _ k?(Jinc);

transverse to the propagation direction z

have to be continuous,

156



C.1. Floquet mode functions

SO:

oiksa _ e_jk;inc)a e—ikoasindcosp _ —j¢

Therefore:

¢ = koasin v cos .

C.1.1 Expressions of the Floquet mode functions

The eigenvalues of the Helmholtz equations are:

Ko = K = 2,0+ B2

So, from the definition of the potential functions,

Vi@ (z, .
e =g k/(:By)7 h! =zxe,
t,m
b, = _—Vt‘l;;j(x’y), (NN

Then:

k, | _. .
Y y e ka,mxe .]kyy

~ Ry ] ;
? X + Y y e_‘]kac,'m$e_.]k3yy7

and:

SN i kema Ky | i
hl, =7Zx@,=—"=| "y — —Lx|e hemteify
\/a kt,m kt,m
I T A S S B
eg% = h;;m XzZ= - Q/E/my + //y X | e eIy,
\/a kt,m kt,m

Resume of Floquet modes expressions

The expressions of the Floquet modes are now resumed:
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6/ — J kx me_.]km mxe_Jkyy
Tm \/— k’

6/ k: e_Jkr mze jkyy
y,m \/_k

h/ \j_ 2"2 me_sz mxe .]kyy

e” — ‘] kx me_JkL 7nxe .]kyy
xT,m \/_ k,

6” — k —jka, m-Te_.]kyy
y,m \/_k

Joky
h,” = \/_k// —2 e Jkz, m¥ e~ Jkyy
J ke -
h;/m — "0 jkz mxe Jk’yy

T Vakl,
C.2 Synthesis of the basis functions

The synthesis procedure of the basis functions follows the one of Section 1.3. These

functions should satisfy the pseudo-periodicity boundary condition:

ue(z,a) = u.(z,0)e . (C.1)

Let fo(z,z) be the a-th entire domain basis function used to represent the solution
of the boundary value problem. Then, it is possible to write the c-th basis function

satisfying (C.1) as:

Zy fa(z,2);

then, both sides are tested on 1-D functlons T,(2):

() T = D ol )T

Therefore, given the following deﬁmtlons:

(@), = (ue(z,2), T,(2)),

and:

(L(C)(x>>ua = <fa(z7x)7 T,,(Z)> )
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C.3. Field representation for 2-D periodic structures

the boundary condition (C.1) is written as:

b (a) — b (0)e 7 = 0.

This can be re-written as:

L(C)(a)y(c) — e LE0)y® = 0,

which becomes:

[L(C)(a) _ e*j‘ﬁL(C)(O)} y(© = 0.

c

The recombination coefficients y© are found by finding a basis of the kernel of

the matrix [L(9(a) — e*L{?(0)]. This can be found by following the procedure

described in Section 1.3.

C.3 Field representation for 2-D periodic struc-

tures

C.3.1 Derivation of the relationships between the field com-

ponents

In this section the equations used to describe the electromagnetic behavior of 2-D
periodic structures excited by means of a plane wave are derived starting from the

space-frequency Maxwell’s curl equations (C.2):

{ V x E(r,w) = —jwpH(r, w) (C.2)

V x H(r,w) = jweE(r,w).

These equations are now written in cartesian coordinates; for the sake of compact-

ness, from here on the dependence on space and frequency is omitted:
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aa% - % = —jwpt,
8;; - - 68% = —jwpt,
% - afgﬁ = —jwpH,
8£Z — % = jwek,
aa}im — 88};2 = jwek,
% — aagx = jwekl,

The coordinate system is chosen in such a way that the invariance direction is parallel
y. The wave vector k(" characterizing the incident plane wave is:

k() = /i (sin ¥ cos i, sin ¥ sin p, cos ) =
= W4/ UE (kxa kya kz) :

Therefore, owing to the translational invariance of the structure, each component of

the electromagnetic field has the same y dependence of the incident field:

E(z,y, 2 w) oc eIk k, € R.
H(x,y, z,w)

Now, by substituting this in the curl equations the following expressions are found:

—jk, E, — % = —jkZH, (C.3)
aaE; _ aa% — —jkZH, (C4)
% Y ik, Ey = —jkZH, (C5)
ik, H. aazy —kYE, (C.6)
a;f - a;; — kYE, (C.7)
;iy ik H, = kY E., (C.8)

where:

kZ = w\/ua\/E = W,
€
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C.3. Field representation for 2-D periodic structures

and

kY = a;\/,us\/E = We.
1

In the following subsections, the field components F,., H,, E,, H, will be expressed
as functions of the derivatives of the components parallel to the invariance direction:
E, and H,.

Derivation of H,

E. is found inverting (C.3) and (C.8):

1 (9E
B ——— (—jkzH, + &2
jky < ! " 0z >

1 (9H
— (Y eH
- JkY(a Ik )

Then, these two expressions are equated:

1 OE, 1 (0H
—— | —jkZH, + 2| = =—= | =L +jk,H, | .
Jky ( K i 0z ) JEY ( O I )

From here, by means of some manipulations:

O0E, 0H,
217 9y y
jk*H, — kY 5, . sz
S0:
OE, 0H,
(12 1.2 H — Y— 7y
K=k H, =k 5 + ky Er
Finally:
B j 0H, OE,
H. = k? — k; (ky Ox kY 0z

Derivation of FE,

H, is found inverting (C.3) and (C.8):

1 OFE
Hy = —— (—jk, B — 2
ij(Jy 82)7

1 0OH
H,=—|jkYE, v .
iky (J ox )

Then, these two expressions are equated:
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I 0E,\ 1 oH,
iz <‘J’“yEZ‘W) ihy (J’“Y ax)‘

So, after some manipulations:

OE, 0H,

'kZE ky—— —kZ— ik*E,
SO:
0H, OE,
E —E, = kZ—Y + k,—~
i ) ox Y0z’
which leads to:
j OE, 0H,
E,=— k kz
=R ( "oz o

Derivation of E,

H. is found inverting (C.5) and (C.6):

These two expressions are equated:

1 aE 1 aH
Jk—z<a—“”) E(a )'

From here, with some algebra:

E H
ky OF, +ikE, = kz% +ik*E,;

Y or

then:
OE, 0H,

K —EHE, =k —kz—L.

i ) Y ox 0z
So, finally:

L j OE, B 0H,

E, = k2—k§ (ky o k7 2 )
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Derivation of H,

E, is found inverting (C.5) and (C.6):

Then, these two are equated:

1 LOH)\ _ 1 (05,
Jky<J/{?H az)———(aerJkZH)

So, with some algebra:

0H, OE,

jk2H, + ky—2 = kY —2 + jk*H..
J + T o7 +]
Then:
OH OF
1.2 1.2 _ y y
J(k: ky)Hz Ky Ep kY I
SO:

j 0H, 0E,
H,=— k. — kY :
- k* — k2 ( Y 0z Ox

Resume of the expressions of the field components

The expressions derived in the previous subsections are now summarized:

Bo= . (kyaaiy _ kza£y> | (C.9)
B, =7 j o (kya;iy + kza£y> : (C.10)
H, —13 i P (kya;iy +kYa£y) : (C.11)
H = — ) = (kyaazy - kyaaiy> . (C.12)

C.3.2 Weak formulation of the problem

Differential problem

In this section the weak formulation of the 2-D periodic structures problem is derived
starting from (C.4) and (C.7) and (C.9)-(C.12). The results of this procedure are
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the expressions of the matrix elements of the matrices introduced in the scattering

formulation of Chapter 1. The unused curl equations are:

oL, O,

0z or —IkZH,
0H, O0H,

0z  Ox = IYE,.

Let A = A,z+ A,X and f be a vector field and a scalar function; then, the following

vector theorem holds:

// [ ]fd do // [ f] dzdx—i—y{ﬂ (Af)-ds. (C.13)

To apply this theorem it is necessary to choose test functions v, € V:

9, Ovr
ox’ 0z

The functions in V' are continuous with square-integrable derivatives. Moreover,

Vé{vr ‘r €N, v, € COX), GLQ(Z\az)}.

these functions are further specialized to satisfy the pseudo-periodicity boundary

conditions:

v (2,a) = v,(2,0)e7?, Vz € [0, L],

where L is the maximum z dimension of ~. The weak formulation of (C.7) is then

obtained by applying the vector theorem (C.13):

[ sz [[ [0 - 525w - f 1o

(LHS)® = (RHS), (C.14)

where (LHS)'” and (RHS)!® are defined as the left-hand side and as the right-hand
side members of the equation. Now, let us recall (C.11) and (C.12):

] OH, . OE,
H=m (ky o Y az)

j 0H, 0E,
H, = — — kY .
- k* — k2 (ky 0z b Ox

These equations are now substituted in (LHS),(ae’j ), leading to:
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(LHS)' = j / /Z kY Evf dzdz+
e i
:j//z kY Eyv; dzdz+
ikY [0E,dv: OE,
[ ]
* / /Z ijﬁyk:; P@Zy %f - a;iy %ﬂ dade.

Now, the unknowns £, and H,, are represented as a linear combination of basis
functions u,:

Ny
E, =Y %,
c=1
N, (C.15)
H, = cgh)uc,
c=1

where u. = v,. Then, by substituting these expressions, (LHS)&E) is

N
(LHS)! =j> / / kY ul®vf dzda+
c=1 X
Ny i (e) * (e) *
kY Oue’ Ov Oue’ Ov
o (e) c T c " | dzd
J;CC //gl@—kﬁ 9z 0z ' ou ax] s
N [, () 4 « (h) 9, %
k Oue ' Ov Oue ' Ov
: (h) Y c ro_ c " | dzde.
+‘];CC //ZkQ—k§ 0z O ox 82] =

The following matrices are defined:

= / / kY uPv* dzdz
b
kY [oul® s oul dur
K),. = “| dzd
) //ZkQ—k§ 0z 8z+ Ox 83:] v

L), — / / k, oul vy oul ovr du ds
" s k2—kZ| 0z Ox or 0z '
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Then, (LHS)® becomes:

(LHS)® =j[M — K] ¢© +jLc® =
_ AR @) | Aleh) o)

It is possible to obtain similar results either by applying the same steps on the

remaining Maxwell’s equation or by duality. By this way:

(LHS)™ = jLc® +j[M — K] ¢ =
— AMO) O 4 Al (b))

C.3.3 Formulation of the continuity equations

In this section the projection matrix elements related to the continuity equations at
the access ports are derived, to complete the formulation of the scattering problem.

The scalar products used in this context are defined as:
(a,b) :/ a-b*dx
0

Continuity of the electric field at port 1

The first continuity condition is:

<EE1)> el(11)> _ <EE1)> e((}l)> .

So:

. - N
<EE )7egl)> _ <E§}), 6531()1> n <Ez(/1)’€§/2>‘

Recalling (C.9), the first term can be re-written as:

Nt . N¢
~ k ou ikZ ou
B 1>> N 7 (e) c (1) (h) c (1)

Nt
(B elin) = 3o (el ).
r=1

So, the following matrix elements are defined:
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Then, this side of the equation is written in matrix form as

ik ikZ
<C<e,1> _ k;_kaH(e,n) c© 4 N2 ) )
Y

Continuity of the electric field at port 2

The second continuity condition is:

<EE2)’ eﬁf)> _ <E52), eff)> :

where:

. _ _
<E§ >,e5;>> - <E§>,eg§g> + <.E;2>, eg;>

Recalling (C.9), the first term can be re-written as:

. N
<E<2> e2>> :_ﬂige) A
' Cag k2= \ o | o

Yy c=1 Y c=1
and
Ny
(Bl = 3t (g o)
c=1

So, the following matrix elements are defined:

(C) e = (el o))

ou
HE2) c (2)
( )qc < az 2(2? ’636#1
wg
ou
K2y [ Tl @\
( )q 82 Z‘ng) ’ 6x7q
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Then, this side of the equation is written in matrix form as:

e,2 Jky e,2 e JkZ h,2) .(h
<C< )_WH( >) C()JFWK( o)

Continuity of the magnetic field at port 1

The third continuity condition is:

where:

D) )\ _ /7@ 1 77(1 1
<Ht h >> _ <H; >,hx,g> + <ng >,h;g>.

Recalling (C.11), the first term can be re-written as:

W\ IR SR o [ 0u
— C
A ag [T e g2 c Oz

Y =1

. Ni
(DAY = - iky chan Oue
= o Mea) = T ge 2.% 0\ By

Y =1

1
,h;,;> |
o

wg

and

Nt
(1) 1 (1)\ _ h h 1
<Hy )’hyﬂ> - ZC((: ) <uE )|Zv(v1g) ’h?(J"3> )
c=1

So, the following matrix elements are defined:

Then, this side of the equation is written in matrix form as:

h,1 jky h,1 h JkY e,1) (e
(C( ) _ mH( )) e _ k?—k;;K( ) )
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Continuity of the magnetic field at port 2

The last continuity condition is:

<ﬁ§2) 7 hff)>

|
S
s
o+~
o
=
K
~_—

where:

<ﬁ§2>, h<2>> _ <ﬁ1§2>, h§33> + <f1<2>, h<2>> .

q )

Recalling (C.11), the first term can be re-written as:

. N,
po | kY SN o [ o
SR A = AN

Y =1

2
,h;,;> |
(2)

Zwg

. N,
< 7 h<2>> _ ok Zf: o [ Oue
S k2 — k2 ¢\ Ox

Y =1
and

Ny
7(2) 1,2\ _ h h 2
(AP0 ) =3 (ul] 0 5.

c=1

So, the following matrix elements are defined:

Then, this side of the equation is written in matrix form as:

h,1 Jky (h,1 h JEY e,1) (e
(C( )_WH ))C()_k2—k§K( cl©

Definition of the projection matrix

The matrix T is defined as:
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jky
k2 — k2

Y

Clel) _ HD

kY

— KD
k* — k2

iky
k2 — k2

(e,2)

Ce2) _

k2 e
e
ik
cwy _ Iy
k= 2
k2 e
e
h, iky
ch? — Pk

(h,1)

(h,2)
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Appendix of “Mortar element analysis of

axisymmetric guiding structures”

D.1 Circular waveguide modes

The technique described in Chapter 4 is applicable to axisymmetric structures ex-
cited by circularly polarized incident fields, with angular dependence is e %, There-

fore, the generating functions of the TM,,,, and TE,,,, mode functions are:

cI)mn - Amn Jm(k1/37zp) e+jm<p
Vin = Bin Jm(kél,zp) e+jmg0’

where k{ ; = Xmn/a, k; = X1,,/2, a is the waveguide radius, i = (m;,n;) and j =
(mj,n;) are multiple indexes, X, and X}, are the n-th zeros of the Bessel function
of first kind and order m, and of its derivative, respectively. The normalization

constants A,,, and B,,, are now calculated. Starting from ®,,,:

(®;, D)) / / <1><I>*pdpdso—5w/ / A2 I2 (ki) et pdpdy
= A2, S d<p/ pJ2 (K ;p)dp = 2m 6;; A2, sz (kip)dp.
0

The indefinite integral is calculated by means of the Lommel integral formula:

/ "2 (at)tdt = %2 [J;n(ax) + (1 _ OZ‘;) an(a:c)] |

It is apparent that one contribution equals zero in the relevant interval; therefore:

2

<(I)i7 (I)j> = 7.‘-"Alzrma2 [Jerl (ké,ia)} )
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SO:

1 1
ﬁ aJmsr (K ;0)

Similarly, for TE,,,, modes, the normalization constant is

Amn =

X,

mn
an /2 2 i
\/_ —m a J kt 4

To summarize:

L Jm(ké,zp) e+jm4p
ﬁa Jm1(ki ;a)
an J (k?t/;/zp) e+jm<p‘

\/_\/ 2 —m?adn(ki;a)

The expressions of the mode functions €}(p), hi(p), h!(p), e/(p) are now calculated.

(I)mn =

\Ijmn =

The following relationships hold:

Vi®;(p
e/i(p>:_tT()
t,0
, \VAS
(p) = P,
t,%

as well as the following impedance relationships:

hi(p) =7 x €(p)
e{(p) =h"(p) x Z.

Finally, it is useful to recall the expression of the transverse gradient in cylindrical

coordinates:
of . 10f .
Vif = f p+ 197 :
p Op
TM modes
/ / /
e;(p) — _# [L giMe-ﬂmW’ 1 ‘]m I (kt ’p) e+Jm<p:| _
kt,i Vb a‘]m+1(kt,ia’) p \/7_TaJm+1<kt ;@)
L B —im Iale) T
VT admi (ki ;a) 7 VTk, a p Iy (K a)

Then, since
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the following expressions are obtained:

r_
{hp_ €y
!’
hw—ep.

TE modes

Wiy o L [He X Talb) Um0 ]
’ p ktlzlz \/_ \/ /2 - m2 a J kg/z ’ p \/_ \/ ,2 - m2 a J kilslz
" !/ /" "
_ |- ]{]t’,,i 1 Jm(k':;zp) e+jm89’ _Jm 1 Jm(ktip) e+jm¢
NZS (k!'.a)2 — m? I (K{ ;a) NZS (k)2 — m? pIm(k;a) .

Then, since

b = [n, ny,o0],

and

the following expressions are written:

"o n
{ €p = hsﬂ

no__ g

€, = hp.

Summary of circular waveguide modes

Considering the et™¢ polarization, modal eigenfunctions are, for TM modes:

P ﬁ aJm-l-l(ké,ia)
e = _Jm Jm<k1/;,zp) e+jm¢
v ﬁké,ia PJerl(ké,i@)

TR p T (K a)
R S T R
v VT a1 (K ;a) ’

and, for TE modes:
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6” _ _Jm 1 Jm(kélﬂp) eJrjmga
NS (K" .a)2 — m2 pJm (K ;a)
v (k".a)? — m? I (K ;a)

R R SR A o
r NZ3 (k!'.a)2 — m? I (ki ;a)

h// _ _Jm 1 Jm(kélﬂp) eJrjmga'

VT ka)? — m2 P Im (k)

For e ™% field dependence, with similar steps the following expressions are obtained:

e/ _ _L J;n<ké,z10) e_jmgp
PRl (K a)
I Jm Jm(k‘éﬂp)

7 VTk a p I (K a)
_ jm Jm(ké,ip)
Pk a p T (k)
h/ —_ _L J;n(kill,lp) efjm@
’ VT adimi1(k ;a) 7

—jmy

—jme

whereas, for TE modes:

"o .]m Jm(kjtlg/,zp) e_jmw

1
VT S0y — e P Im (K a)
)

€, = —= e
v U (k! .a)? — m? I (k! a)

R SR ST
p N3 (K ,a)? — m? I (ki ;a)

h” _ m 1 Jm(kjtlg/,zp) e_jm%

VT (k' a)2 — m2 P Im(Ks0)
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D.2 Field representation for axisymmetric struc-

tures

D.2.1 Derivation of the relationships between the field com-

ponents

In this section the equations used to describe the electromagnetic behavior of ax-
isymmetric structures are derived starting from the space-frequency Maxwell’s curl

equations:

{ V x E(r,w) = —jwuH(r,w) (D.1)

V x H(r,w) = jweE(r,w).

These equations are written in cylindrical coordinates, where z is chosen to be

coincident with the axis of the device:

%%iz - % = —jwuH,

% - 8;;; = —jwpH,
o)
%aa[joz - = el

T G = JueE,
o)

Since the incident field has a ™% angular dependence and the structure exhibits
axial symmetry, its angular dependence is preserved in the device; this means that
it is possible to apply the spatial Fourier transform on the ¢ variable, substituting

the angular derivatives with jm:

d . .
—e"? = jme" = 4 — jm.
de dep

Then,
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)

1 oF .
~imE, — —a; = —jwpH,
0E, OF,

= — iwnH

0z ap Ll

1 (0(pE

- ((8—80) —JmEp) = —jwuH,
p p

1 0H

] HZ ¥ — EI
me 5, —Jwek,
0H, OH,

0z dp R

1 (M — ij,,) = jwek,.
p\ Op

(D.2)
(D.3)
(D.4)
(D.5)
(D.6)

(D.7)

The expressions of the F,, E., H,, H, components as functions of the angular ones

are now derived.

Derivation of £,

The expressions of H, are now derived from (D.4), (D.5):

Then, these two expressions are equated, leading to:

SO:

(m”

and then, finally:

ikZp \  Op
H =" (JkYEp - 8;?)
a(g?) —m’E, = —k*p’E, +ijp2%’
=y
- _m2—jk2p2 (ma(gf“’) +kZp2%) .

Derivation of F,

Now H, is derived from (D.2), (D.7):
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Hy = -~ <jk:YpEz . a(pr)) .
jm dp

Then, these two expressions are equated:

2 E H
-"E, —jma C = —k*pE, —jk‘Za(p ‘p),
p 0z dp
S0:
. 0B, ., O(pH,)
Ez - k2 2 - — d kZ L
(m” = k°p%) = —jmp——= + jkZp 9
and then:
j 0B, . 0(pH,)
m? — k2p? (mp 0z P dp
Derivation of H,
The component £, is now derived from (D.2), (D.7):
p (OE, .
E,=—|—*—jkZH
jm ( 2 p>
1 dpH,) .
L= —jmH, ).
jkYﬂ( op
Then, these two expressions are equated:
. OF . O0(pH,)
Jk)Yp28—;+l{?2p2Hp:Jm apw +m2Hp,
leading to:
, OE, . 0(pH,)
H 2 12,2y Y 2779 Z\FTre)
p(m” —k"p%) = JkY p"—~= — jm o
and, finally:
J d(pH,) 2 0F,
H,=—- —kYp —— .
’ m? — k2p? (m dp e

Derivation of H.,

The expressions of £, are now derived from (D.4), (D.5):

1 . o(pE.
E,= e (—Jk‘Zsz — %)
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1 [/jm 0H
E,=—|"—H ——%2).
’ jkY(ﬂ 32)

Then, these two expressions are equated:

2
dp P 0z
SO:
. d(pE,) . OH
H,(m? — k?p?) = —jkY p—=—2~ — d
(m p7) = -] =5, I,
and, finally:

_ J OH, d(pEy)
H, = e i (mp 5% + kY ap .

Resume of electromagnetic field components

The expressions obtained in the previous section are now summarized:

B,=—— _jk2p2 <m8<gf o) k7 Qai ) (D.8)
H,= - — _jkzpz <m8(pal;[ o)ty 2882 ) (D.9)
E.=-— _jk2p2 (mpaa% - kzpa%f@)) (D.10)
H, = —m <I<:Ypa(g—f¢) + mp%) : (D.11)

D.2.2 Formulation of the internal BVP: m # 0 case
Differential problem

Even if the two second-order equations in F, and H, can be easily derived by
inserting (D.8) + (D.11) in (D.3) and (D.6), it is convenient to shift the differential
operators from the field components to the test functions by using the following

vector theorem:

//[ ]fdzd //{ 5f]d deg(fA)_dS

where Y is the domain where the BVP has to be solved, and 7 is its boundary. The

first step is to cast (D.3) and (D.6) in weak form, by projecting them on functions

o' and v belonging to the following function spaces:
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VO 200 reN, 0@ e COX) ovr? o € L*(Z\0X),v9| =0
r ) ! r ’ ax ’ az > 7T ypEC

ym At oM . eN o™ e C(O)(Z) 87}_7("}1) v e LX(X\ X))
r : » Yr ’ 8137 0z ’

where ypgc is the PEC part of boundary of Y. The functions belonging to both
spaces are continuous with square-integrable derivatives; moreover, the ones be-
longing to V() are further specialized to satisfy the Dirichlet boundary condition.
Focusing on (D.6), its weak form is:

(o) (o)
kY // E " dpdz + // [Hpag; . Hzag;] dpdz = 7{ [HE‘O) U,@*} .ds
z z 4 P v

(LHS)'® = (RHS)®.  (D.12)

According to the method of weighted residuals, the ¢ components of the electro-

magnetic field are written as series expansions, using functions uw? € V© and

u e V1 as follows;

N©
E, = Z ) (D.13)
c=1
N
H, = Z My ™ (D.14)
c=1
where 1 = vl 4™ = ™. The left-hand side of (D.12) is now written using these

expansions for the ¢ components
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_ (h) jm_ 9(pu™) vt
ch //2 =K Oy P dpdz+

f 2 (&) o, (e)*
© jkY p© Ouc’ Ovur dod
+ZCC //Z m? — k2p? 0z 0z pazy
N @)\ 7, (o)
(e) .]kYIO a(puC )3v7~ dod
+ZCC //2 m?—k2p Op  dp o
N(h

S o,
m2 — k2p? 0z Op P

Then, after some arrangement:

(c)
(LHS)® = jkY Z ! / / v dpdz+
f Jm
h
+zc£>// ot

N©
ol vl (pul?) v
+ZC // {m2 k2 2p[ 0z 0z * dp  Op dpdz.

ap 0z P~5, dp

(h) o (e)x
8(/)uC )aw _ Ouc’ Qv ]}dpdz+

By defining:

(M©)), / / v *dpdz
ol vl o(pul?y vl
(K©),
// {m2 k? 2p[ 0z 0z * dp dp dpdz

8(puc )(%r o op'®
(e _
(L // {m2 k2 p? [ op 0z i op ] }dpdz,

it is possible to write compactly the equation as:

(LSE)" = jky [M '+ KO ¢+ jmL©® M =
- A (e,e) C + A (e,h) C(h).
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The following duality theorem is then applied:

the following matrices are defined,

(M(h))rc - // ugh)vﬁh)*dpdz
X

(KW),. = / / : dus” oy i a(pul) ot dpdz
rc 5 m2 — k2p2p P 0z 0z ap 8p P

(e) (h)« () g, (h)x
(L®),. — // 1 d(puc”) Oy pauc dvy dpdz,
5 | m? — k2p? dp 0z 0z 0Op

and the dual equation is written as:

(LSE)® = jmL® ¢© — jkz [M® 4 K®] c® =
_ Ame) o) | AN ((b)

Formulation of the continuity equations

In this section the projection matrix elements related to the continuity equations at
the access ports are derived, to complete the formulation of the scattering problem.

The scalar products used in this context are defined, at the k-th access port, as:

e
(a,b) =27 / a(p,¢) - b*(p,p)pdp.
0

Continuity of the electric field at port 1

The first continuity equation is:

where:
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Then, recalling (D.8):

N
0o jm Ooue 1
(Bt =3 (=t ()| et
c=1 z= zl
wg

N

: (h)

jkZp*  Oue 1
LN e
Z < m? — k2p? 0z ) £,
N®

1 1 e
(B0 ef) =3 (g )

So, the following matrix elements are defined:

(M= (] e

(1) >
<p7q

e
Oue

(h)
(K(h,l))qC _ ,e(}) 7
m? — k2p? 0z " psd

\ Z=Zwg

(H(e’l))qc

1
— k2p?
0

and then it is possible to write the projection term of the equation in matrix form

as:

[C(evl) — ij(eJ)} c® — jkzK®V ™,

Continuity of the magnetic field at port 1

The second continuity equation is:

<ﬁ§1),h§1)> _ <ﬁE”,h§”> ,

where:

) .1 1 1) 77 1
() = (70.060) (000

By recalling (D.9) the following equations are obtained:
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;) 2 A ()
2 m\ _N" o [ kY Oue 1)
<Hp ’hP7Q> Z c <m2 o k2p2 az 7h/p7q +
c=1 :z‘(,vlg?
N . P (h)
Jm Uc h 1
+) ™ +u® | nl
N
(1 1 _ h h 1
(A0 =3 (0] 12,
c=1

so, it is possible to write this side of the equation as:

[C(h,l) — ij(hvl)} c™ + kY KD,

Continuity of the electric field at port 2

The third continuity equation is:

<EE2)> eg2)> _ <EE2)> eff)> 7

where:

Then, recalling (D.8):
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f . e
N ou'®
E®. e(2>> N —L pZEe 4y ECRNE
< P P4 Czl m2 _ k2p2 ap zfz(Q) P4
=22)
N . 2 (h)
ikZp®  Oue 9
; m2 _ k2p2 8z _ ‘(NZg? P4
N
(2 L2\ _ e e 2
(B =30 (W] gy ).
c=1

So, the following matrix elements are defined:

( e e 2
(C2)ge = (] €2))

1 ou'®
r (e) (2)
Y + ur € ,t
<m2 — K ( Ip ) e >

h
(K12)) P ou
a° m? — k2p? 0z

\ Z=2Zwg

(H(e’z))qc

and then it is possible to write the projection term of the equation in matrix form

as:

[C(eﬂ) _ ij(eJ)} c® — jkZzK®2 M),

Continuity of the magnetic field at port 2

The last continuity equation is:

where:

Then, by recalling (D.9):
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2
w$+
@)

=Zwg

N . (h)
m /] jm oue
(-t (%

£ . 2 (e)
<A(2) h(2)> :Z - < jkY p* Oue
P Tpg c m?2 —/{?2p2 0z

c=1 2= (2)
wg
N
77 (2 2 _ h h 2
() =32l (b 15
c=1

So, the following matrix elements are defined:

(€)= (ul] o 1))

1 8u£h)
(H(h’Q))qc - + u® ,h(?)
m?2 — k2p2 3,0 ¢ 2=22) P

2 (e)
o p Oue
(K( 72))(1C — < ,hff > 7
e
\ zfzwg

m? — k2p? 0z
and then the projection term of the equation in matrix form is written as:

~

Q

[C(hﬂ) — ij(hﬂ)} ™ + kYKo,

Definition of the projection matrix

The matrix T is defined as:

CcEb — jmHED ik ZK®)
jkY KD c) _ jmH®D

e C©2 — jmH?) ik ZK®2)
] kY K(©2) ch2) _ ij(h,Q)_

D.2.3 Formulation of the internal BVP: m =0, TM, case

In the TM, problem of the m = 0 case, (D.8) and (D.10) simplify as:

i OH,
B,=-1
kY 0z
. . . D.1
__ ) OpHy) _ _§ i 08, (B.15)
: kY p Op kYp ¥ kY 0p
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Then, (D.3) is cast in weak form by projecting it on test functions defined as w® =

p2U7(«h). This eliminates the singularity of the field components (D.15) in p = 0.

Then, the Stokes theorem is applied to integrate the resulting equation by parts:

—Jk‘Z// H w(h)*dzdp+//

dp
(LHS){"” = (RHS)!"

w” —E, d dzdp = ]((EE“”@U@*) -ds
g

Now, (D.15) are substituted in the left-hand side of this equation, leading to:

(LHS)™ = —jkZz / H,aw™* dz dp+
X
1 OH, dw™”*
_jk;Y/E 0z 0z dzdpt
// 3wr
JkY

dp
It should be noted that the integrand functions have a pole in p = 0; with this choice

dzdp.

of the test functions, this singularity is removed; indeed:

wT(,h) _ pzvﬁh)
Hw™ 9 ov
0z P 0z
ow™ oo™
op pr—— 4 2pvM.

This is now substituted in the previous equation, leading to:

(LHS)™ = —jkZz / H,oM*p? dz dp+

0H, Hui*
JkY // 5. P 2dzdp+

o ][5 e

Then, by substituting the expansion (D.14), this equation becomes:
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<h)
(LHS)™ = Zc {—sz/ H,o™*p? dz dp+

0H, 6 r
JkY// o p 2 dzdp+

oo™
r (h)=*
Jk‘Y//[ ”p o T

which is compactly written as:

|

dz d,o} ,

(LHS) = A® M)

where:

A(h’h) — _Jk,ZM(h,O) o _K(h,O)’

jkY
and:

hO)_// (h* Qdde
o [0 [

Formulation of the continuity equations

dp

oul vt
+pg ][p Y —1—22} ]dzdp

The continuity of the electric field is automatically satisfied by the choice of the
magnetic current densities at the access ports, as discussed in Chapter 1; therefore,
to complete the formulation of the problem the continuity of the tangent magnetic
field has to be enforced. Since H; = @ H,, the continuity condition that should be

enforced is:

which is written explicitly as:

(h)
2 N

2 H(khk*pdp—QWZc / H k)*pdp,
0

so, the right-hand side of this condition is written as:

N® )
f Pwg
2 g ) uMhF)*pdp = CF) )
c=0 0
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and so:

T,gh) — C®h)
where:

(k)
Dw
(C)pe =21 / uMREY pdp.
0

D.2.4 Formulation of the internal BVP: m = 0, TE, case

In the TE, problem of the m = 0 case, (D.9) and (D.11) simplify as:

j OF,
"= o
i 0pE,) _ ] +L%
: k:Zp op  kZp ¥ kZ Op°
()

Then, (D.6) is cast in weak form by projecting it on test functions defined as w;,’ =

p%ﬁe). This eliminates the singularity of the field components (D.16) in p = 0.

(D.16)

Then, the Stokes theorem is applied to integrate the resulting equation by parts:

(o)
jkY//E w® dzdp+// [ our” —Hzaqg; ] dzdp—jf(H&")w,@*)-ds
Y

(LHS)'¥ = (RHS)'.

Now, (D.16) are substituted in the left-hand side of this equation, leading to:

(LHS) —jk:Y// E,w'®* dz dp+

OE, 8w7(~e
dzd
JkZ // 9, Ot

awﬁe)*
JkZ//[ } op 2

It should be noted that the integrand functions have a pole in p = 0; with this choice

of the test functions, this singularity is removed; indeed:

,w7(ne) _ p201(ne)

0z 0z
(e) e)
ag;; =/’ @gr +2pv(
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This is now substituted in the previous equation, leading to:

(LHS)® = jkY / / E 0% p? dz dp+

OE, 0v\" 2
dzd
sz // gz F T

ez [ [

"~op
Then, by substituting the expansion (D.14), this equation becomes:

—|— 22} ] dzdp.

N(C)

(LHS) e)—Zce){JkY// 0% p? dz dp+-

sz// oE, 8
iz /] [P+ ]

which is compactly written as:

dp

(e)=
p@vr —I-QU ] dzdp}

(LHS)® = A=) ¢©

where:

and:

M(e,O) _ // uge)vﬁe)*pQ dz d,O
ou® ow ﬁ
K©0 :/ P p*dzdp + //
X

Formulation of the continuity equations

ul vl
) tp gp][p gp +2v ]dzdp

The continuity of the magnetic field is automatically satisfied by the choice of the
electric current densities at the access ports, as discussed in Chapter 1; therefore,
to complete the formulation of the problem the continuity of the tangent magnetic
field has to be enforced. Since E; = @E,, the continuity condition that should be
enforced is:
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which is written explicitly as:

(k) N(e

(k)
Pwg Pwg
27r/ E pdp—QWZc / E(k k)*pdp,
0

so, the right-hand side of this condition is written as:

N©® *
27 Z ) i uge)egf()]*p dp = CM ),
=0
and so:
T, = Cl»
where:

L L
0

D.3 Singularity-subtraction scheme

The double integrals involved in the formulation of the MEM described in Chapter

4 have the following form:

1_//m kpuv)dudv, (D.17)

where g(u,v) is a regular function in (u,v) € [0, 1] x [0, 1]. The singularity p, = m/k
in the spatial domain is mapped into a line of poles v,(u) in the parent domain.

Focusing on the bilinear mapping case, which is used to transform the unit square
into a generic trapezoid with straight edges, the expression of v, (u) is readily found,

starting from the expressions of Appendix A.1:

p(u,v) = E+ Fu+ Gv+ Huv. (D.18)

If p=pp, v=10,(u), and:

pp = E + Fu+ Guy(u) + Huv,(u),

then, by inverting this expression, the following result is obtained:
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_p—E—Fu
vp(u) = G+ Hu
The integral in (D.17) is singular if v,(u) intersects the interval v € [0,1]. In this

(D.19)

case, a singularity-subtraction scheme is applied:

[—// —————dudv =
m — kpuv
// 9lu, vp(u dudv+// “U*’ jdudo. (D.20)
m — kpuv m —

Idlff smg

The integrand function of Ig¢ is continuous, since the numerator equals zero for
v = vp(u), and the integral is evaluated by means of the Gauss-Legendre quadrature
rule. For what concerns Ign,, an analytical-numerical quadrature scheme is used to

evaluate it efficiently.

D.3.1 Integral calculation: infinitesimal losses limit
The integral Iy, is properly interpreted as its limit for infinitesimal losses; therefore,

by considering a complex dielectric permittivity:

e =g —jel, erel >0, e el €R.

)T

Then:

k = wy/ocor/er = k' —jk", K kK" > 0.

Now I, is manipulated, leading to

_[' :/1 ! g(u UP( )) dUdU—
o o Jo m—kp(u,v)

_ /Olg(u,vp(u)) UO mdv} du =

= /0 g(u, vp(u)) 1, (u)du.

Then, focusing on the internal integral:

_/1 1 do— 1 /1 1 Qo —
—Jo m—kp(u,v) v k(G + Hu) Jo o _ E-B-Fu v
B 1 / 1
k(G + Hu) J, v—uvp(u)

dv
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Since k = k' — jk”, then:

m )
A Py +ipn, oy >0,
knowing that:

n_F— Fu

vp(u) = G+ Hu '’

where every quantity is real exception made for k, it is possible to identify the real

and imaginary parts of v, (u):

vp(u) = vg(u) +jvg(u).

Here,
m_F— Fu
UI/)(U’> = Re {v,(u)} = Re {w} =
1 m
= Red——F—Fuy =
G+ Hu e{k “}
1 m
= oo Bl -
where:
m  mk* m
_:_:_k/_i_-k//’
TN
SO:
v'(u):; W~ E— Ful.
P G+ Hu ||k

Then, with similar steps:

vg(u)zﬂm{vp(u)}:Hm{%_E_Fu} 1Lom,

G+ Hu :G—i—Hu|k;|2

So, by using these definitions:
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1 b
Lu{w) = k(G + Hu) /0 v — vp(u) dv=

1 /1 1 q
= — v =
k(G + Hu) Jo v —v)(u) —joy(u)

- 1 ! v — v (u) )
) U (o —o()? + (o T

1l
p p

Fig) [ o T T

- 1 1 ! 2(v — v (u)) .
= THC + Hu) [2/ (0w, ()? + (o T

Some observations:

e The imaginary part of I,(u) is regular; indeed, it is given by the sum of two

inverse tangent functions (that are smooth functions); the worse case occurs

for infinitesimal losses, which means v/ (u) — 0; in this case, the sum of the

inverse tangents degenerates into the characteristic function of the domain.

However, even if regularity is reduced, the imaginary part remains bounded.

e The real part is more critical, since, for v](u) — 0, there are two discontinu-

ities: ug such that vy (up) = 0, and u; such that vj,(u;) = 1. This means that

the presence of losses regularizes the logarithm, and so the integral.

Finally, let us study the behavior of the imaginary part for infinitesimal losses. We

proved that, for e/ — 0, v;(u) — 0%, since pf; > 0, as we have proved previously.

So:
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L)

/
1 — v (u) > 0 = arctan < o

™
— —
2

, v (u) T
v, (u) > 0 = arctan (0—+ =5

So:
1
k(G + Hu)

If the singular line intersects the domain, the integral has an imaginary part even

Im {7, (u)} — —

if the integrand functions are real. This is reasonable, since 7 can be interpreted as
half of the residual of the integrand function. In other words, this interpretation of

the integrals coincides with their evaluation with the residuals theorem.

D.3.2 Bilinear mapping case 1: trapezoids with bases par-
allel to z
The case F' =0 and F'+ H = 0 in (D.19) is now considered. In this situation the

horizontal singular line is mapped into a horizontal singular line, as in Fig. D.1

since:

therefore, the line of poles is constant with respect to u. If the singular line is inside

v A P A

=Y

>
L z

Figure D.1: Sketch of the parent domain (left) and of the spatial domain in the case
F =0, FF+ H = 0 of the bilinear mapping.

the [0, 1] x [0, 1] interval, the following integration scheme is applied to the singular
part:
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g(u,v 1 ! ! 1
smg / / p— P ) dudv = —E (u,vp(u))/o mdv du =

G
1
) [ln

P +j7r}.

Up

The logarithm does not introduce any singularity, so this integral can be calculated

by means of a Gauss-Legendre quadrature rule.

D.3.3 Bilinear mapping case 2: trapezoids non-parallel bases

Ifin (D.19) F+H = 0 and F # 0, as sketched in Fig. D.2, two situations can occur:

v A P A
! / m/ky | -
’Uéz)(u)
<>
IW m/ ko
L U'O 1 u z

Figure D.2: Sketch of the parent domain (left) and of the spatial domain in the case
F # 0, F + H = 0 of the bilinear mapping. The red lines identify two examples
of pole lines for two different frequencies; the dashed parts of the red lines are
associated to the parts of integrals outside of the spatial domain, which have to be

properly treated.

e the singular line intersects a vertical side and an oblique side, as for k = ky;

e the singular line intersects only the two vertical sides, as for k = k».

These case should be tackled separately; indeed, since u € [0, 1], if the singular
line intersects only the vertical sides, it is entirely contained in the unit v interval.
On the other hand, if the horizontal line intersects the oblique side in the natural
domain, there is a point ug such that v,(ug) = 0, since, for 0 < u < ug, vy(u) & [0, 1].

The two cases are now discussed.
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Two vertical sides

If Bug : vp(up) =0, i.e., the two vertical sides case, the quadrature scheme is quite

similar to the integration case 1; in this situation:

u, v L[ glu,vp(u) 1 1
Ling = o dudv = —— b / 7 dvdu =
& //m k:puv) wew k/o G+ Hu [Jy _ x_E-fu vt

G+Hu
e

In this case the logarithm introduces no singularity, therefore this integral can be

+j7r] du.

calculated once again with a Gauss-Legendre quadrature rule.

Intersection of the oblique side

If the oblique side is intersected by the singular line in the natural domain, 3 uy €
[0,1] : vy(up) = 0. Since the mapping is injective, v,(u) is a monotonic function, so
the zero is unique and v,(u) < 0, for u € [0,ug]. This generates several problems,

which are here reported:

e In u = wugy the integrand function has an integrable singularity; this slows down
the convergence of the integral, and therefore the Gauss-Legendre rule is not

very effective.

e For u < wug, the integral is not singular; therefore, the imaginary part of the
integral equals zero, as it has been proved in the introduction. This introduces
also a discontinuity of the imaginary part of the integrand function for u = uy,

which slows down the convergence of the Gauss-Legendre quadrature rule.

e As expansion and test functions Chebyshev polynomials are used (as described
in Section 1.3 and A.1); for u < wyg, these polynomials are evaluated in values
of v < 0; since there is a mapping y = 2v — 1 from the argument of the Cheby-
shev polynomials y and v, for uyg < 0, y < —1; in this case, the Chebyshev

polynomials explode, and their evaluation is not performed correctly.

These three critical points can be tackled by developing an ad-hoc quadrature scheme

for this situation. In this case, it is convenient to start from the initial integral:

I = du dw.
//m k:,ouv)uv

Given w = Kyug, where Ky, is a defined threshold, 0 < Ky, < 1 (in the practical
case, K, = 0.9), it is possible to exploit the linearity property of the outer integral

and to rewrite it as:
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]—// dudv—i—// —  —dudv =1 + L.
m — kpuv m — kpuv

The integral I; is regular, so it is possible to evaluate it with the Gauss-Legendre

quadrature rule. The integral I5 is treated with a singularity subtraction scheme:

1 1
[2:/ Mdudyz

m — kp(u v)
/ / glu ”p dudv+/ / (u ”p jdudv.
m — k’p m —
12 dift I2,smg

The integrand of I gis is regular and its integral can be calculated with the usual

Gauss-Legendre quadrature rule; instead, further manipulations should be applied

tOIZ,sing~
u, v ) ]_ 1g<ur0<u>)/«1 1
[s1n p d d — » VP _ d d _
2g//m kpuvuv k/uG‘i‘Huov_ﬂvu
G+Hu
:_jﬁ/ Mdu—l/lg(u,vp(u»ln G+Hu—%+E_|_Fu o

= [2i,sing + IQr,sing-

The imaginary part integral is conveniently calculated from ug to 1, since the inte-
grand function is multiplied times the domain characteristic function (given by the
limit of the inverse tangents) equals zero in the [, ug] interval; by this way, Io; sing
is regular. For what concerns Iy, sing, the following simplification is performed, ex-
ploiting the fact that H + F = 0 but F # 0:

. _/19(U,vp(u))l ‘G+Hu—%+E+Fu
2r,sing — B n

G+ Hu m_F_ Fy v=
L gln () [ [EXG- 5
_ L ) 1 0| o || du =
ko/ G+ Hu | F og |u+ u
1 [t g(u,vp(w), |[E+G - 1 [ g(u,vp(u))
- _ ’ 1 du AN PN du .
ko/ GrHu M F +k0/ G+ Hu gt — ol du
I31::ing 13:sring

The logarithm in I3y ¢ine has no singularity; on the other hand, Is. gng still exhibits
a singularity for u = ug, which can be addressed by means of an ad-hoc quadrature

scheme. The first step consists of dividing the integral in two contributions: one
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for u smaller than wug, one from u going from uy to the end of the domain. So, it is

possible to remove the absolute value sign, writing:

L[ g(u,vp(u)) 1 g(u,vp(u))
D sing = gLl U du+ — EAGIR I COPR| du .
Besing = ko/ G 1 Hu oslio—u) “+k:0 v G+ Hu og(u = o) du
1361‘,rsing ISC;,,sing

Now, focusing on the first integral, and the following change of variables is applied:

u—u=e = x=—In(uy —u),

SO:

du=e"dz.
The integration bounds become:

o foru=1u, z=—In(uy — 1) ;

o for u = ug, v — +00.

So, the integral is transformed into:

“ g(u, Up( ) / —e " vp(ug —e™) —z
1 u)d — dx.
/u G + Hu Og( = In(uo—m) G + H( Ug — e—x) ( x)e !

Then, a second integration variable change is applied:

y=x+In(uy—u) =2 dr=dy.

So:

o for v = —In(up—u),y=0

e for z — +o00, y = +00.

Finally:

e 'dr =

/+OO g(UO - e—x’ Up(uD - e—m) (—ZL‘)
—In(uo—7) G+ H(UO - e—:c)

=I5, sing = 0 g(ug — emvHinlnT™, vp (1 — e yHin(uo—))
3c1,sing 0 G+ H(UO — e—y-&-ln(uo—ﬂ))

(—y + In(ug — @))e ¥ dy.
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This integral is calculated by means of a Gauss-Laguerre quadrature rule; therefore,
these operations transformed an integral with an integrand exhibiting a logarithmic
singularity, calculated in a bounded domain, to a regular integral to be calculated in

an unbounded domain. A similar procedure is now applied to the second integral:

In this case, the change of variables is:

u—uoze’$:>x=—1n(u—uo)7

SO:

du = —e *dx.

The integration bounds are transformed as follows:

® U =1Uy =— T — +00;

o u=1= 2= —log(l —up)
S0:
=" In(u — up) du — z)e " dx.
w G+ Hu 0 oo G+ H(upg+e7®)

Finally, a second change of variables is applied:

y =+ In(1 — ),

so, the integral becomes:

(—y +In(1 — ug))e ¥ dy.

3co,sing — : G+H(u0+e—y+ln(uo—ﬂ))

D.3.4 Bilinear mapping case 3: trapezoids non-parallel bases

Now, the FF+ H # 0, I' = 0 case sketched in Fig. D.3 is studied. This case is
quite similar to the previous one, and it will be solved using similar ideas. Recalling

(D.19), under these hypotheses, the following expression of the line of poles is found:
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v A P A
\
\
=< m/ky
: ’UI()Q) (u)
- m/ ko ‘
/U[() )(u)
> >
(0} 1 u L “

Figure D.3: Sketch of the parent domain (left) and of the spatial domain in the case
F =0, F+ H # 0 of the bilinear mapping. The red lines identify two examples
of pole lines for two different frequencies; the dashed parts of the red lines are
associated to the parts of integrals outside of the spatial domain, which have to be

properly treated.

The numerator of this function is not a function of v and therefore it can not equal

zero; on the other hand, it is possible that the expression equals one; indeed:

In this case the function v,(u) is monotonically descending, therefore it is still possi-
ble to define u < u; and to divide the integrals in two contributions, just like in the
previous case. Once again, this leads to the definition of very similar expressions.
The first differences arise when defining of the sub-integrals Is; ging, according to
the notation of the previous section; therefore, the calculations will start from this
point:
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Io o :_i/lg(u,vp(u))ln G+ Hu—p,+ E+ Fu du—
2r,sing ko Js G+ Hu pp— E — Fu
H(u—pp—E-G
_ L[t |
ko J G+ Hu pp— E
L[ g(u, vp(u)) pp— E—G oo — E
ko Ju G+ Hu nu H n q U
L[ g(u,vp(w)  |pp— E 1/
e — ) 1 p d o 1 N d
koL G+ Hu T u ko/u n|u—u| du
]31:;113 Ig;;ng

The integrand of I3y qng is regular and its integral can be evaluated by Gauss-
Legendre; the remaining integral has the same form of Is gne for the previous case,

therefore it can be evaluated using a quadrature scheme equal to the previous case.

D.4 Evaluation of the mode conversion efficiency

In this section the algorithm used to evaluate the conversion efficiency from the
TE;; mode to the balanced hybrid HE;; mode is described. This parameter has
been used in Section 4.3 to describe choked mode converter performance, starting
from the GSM evaluated with the MEM.

The expressions of the hybrid balanced modes are found in [37] and [43] are

reported in the following.

e For HE,, modes:

E.(p; ) = eon(p)
Ey(p, ) = 0;

as a matter of fact, one of the properties of the HE;,, modes is their linear

polarization.

e For EH;, modes:

E.(p, ) = ean(p) cos(2¢)
Ey(p,p) = ean(p) sin(2¢p).

In these equations, a is the radius of the waveguide, k{, = xon/a, where Yy, is

t,n

the n-th zero of the 0-order Bessel function of first kind, and the function e, ,(p) is
defined as:
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P m Ty )

It is useful to convert the components in cylindrical coordinates, by using the fol-

lowing change of basis:

E,=FE,cosp+ E,sinp
E,=—E,sinp + E, cos .

e For HE,, modes:

S

(p,0) = eon(p)cos
Ez(pv (10) = _eﬂ,n(p) Sin ®-

e For EH;,, modes:

E,(p, ) = e2n(p) [cos2¢ cos ¢ + sin 2@ sin | = e ,(p) cos ¢
E.(p, ) = ean(p) [— cos2psin ¢ + sin 2¢ cos | = e2,(p) sin ¢.

These expressions are now used to evaluate the projection matrices.

Projection of HE;, modes on HE;, modes

The following calculation is now performed:

27 a
(ef™, ™) = / / (60,0 COS eq,m COS @ + €q,5 8i eq sin @] pdp dyp =
0 0
a 27
= / €0,n€0,mp dp / [cos® ¢ +sin® ] dp =
0 0

= 27T/ €o,n€o,mp dp =

0
= Omn(;mna

where C,,, depends on the normalization constant of the hybrid modes.

Projection of EH,, modes on EH;, modes

The following calculation is now performed:
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<e(EH EH)> / / €2, COS PEg 1, COS P + €2, SN Yeq 1, sin @] pdp dyp =
a 2
= / €2.n€2.mp dp/ [cos2 @ + sin? <p] dp =
0 0
=27 / €2,n€2,mpP dp.
0

It is remarked that, in this case, the mode functions are not orthonormal, therefore

the integral should be calculated explicitly.
Projection of EH;, modes on HE;, modes and of HE;, modes on EH,,
modes

The following calculation is now performed:

2w
(o059 = [ [ eoucos peameoni — o peasingl pdpds

a 2w
= / €0,n€2,m P dp/ [Cos2 @ — sin? gp} dp =
0 0

=0= <e£LEH), eng)> .

Definition of the mode projection matrix

The following projection matrix T is defined:

(HE — HE) 0

0 (EH — EH)

Definition of the known terms projection vector
The electromagnetic field E(p, ¢, z) is represented in terms of circularly polarized

circular waveguide modes:

E(p, ©, Z) = [ﬁep + QAO%] e+jm<p7

therefore:
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2m a
(E, e(HE)> = / / [e,eT™Peq , cos p — e e™eg , sin ] pdpdp =
o Jo

2m a 27 a
= / et cos o dy / €pConp dp — / e sin pdyp / €pConp dp.
0 0 0 0

Then, for what concerns the EH modes:

2m
(E, el = / / [e,eT¥ey,, cosp + e e ey, sin ] pdpdyp =

27 a 27 a
= / e cos p dy / epeanpdp + / ™ sin p dyp / epeanp dp.
0 0 0 0

Evaluation of the conversion efficiency

The conversion efficiency 7cony is now calculated. Given e the vector of mode func-

tions defined as:

(Hé)

J— e]\/modes/2
€= (BH) | >
€
egEH)

e(EH)
Nmodea/2

the expression of the electromagnetic field in a transversal section of the structure

E(p, ) is represented by using the hybrid mode basis:

Nmodes )
E(p, ) = Z Cnene™?,

n=1
where ¢, are unknown coefficients. To obtain their expression, both members are

projected on the same modes e,,:

Nmodes

E em § CTL en7em )

but:

(en,em) = (T)mn.
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Therefore, given

bm = <E7 em> )
the following system is obtained:
b=Tec.
So:
c=M"'b.

The vector ¢ contains the projection coefficients; therefore, the following quantity is
defined:

nCOHV -

which is the ratio of the power of the coefficient ¢y, related to the HE;; mode, to

the sum of the powers of all the modes.

Results and comments

The algorithm discussed above has been applied to the choked mode converter de-
scribed in [37], [38]. Since the parameter 7oy is strictly related to the cross-polar
pattern of the structure, in Fig. D.4 1., a comparison of the two parameters has
been reported. The cross-polar component has been obtained by applying the equiv-
alence theorem at the aperture and by filling with PEC all the space around it [34].
The radiated field distribution has been used to obtain these radiation patterns; the
plot has been build by taking the maximum of the pattern in the 0° < 60° angular
range, for ¢ = 45.
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Conversion efficiency TE, —>HE,

100 i T T
oof ! !
1 1
__ 80f 1 1
S 1 1
701 1 1
1 1
60 i i

50 | I i 1 i i i i
8 9 10 11 12 13 14 15 16
Frequency (GHz)
X-Pol

-1 T T i T T y T

(dB)

8 9 10 11 12 13 14 15 16
Frequency (GHz)

Figure D.4: Top: TE;; —HE;; conversion efficiency neony(f). Bottom: maximum

of the cross-polar versus frequency.
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Appendix E

Appendix of “A boundary-integral method

for lens antennas”

E.1 Dyadic Green’s function representation of the

electromagnetic field

In this Appendix an integral representation of the electromagnetic field in a homo-
geneous medium based on the dyadic Green’s function concept is recalled. The curl
Maxwell’s equation in the space-frequency domain are:
V x H(r,w) = jweE(r,w) + J(r,w) (B.1)
V x E(r,w) = —jopH(r,w) — M(r,w). ’

The Green’s function is derived in the spectral domain. Let A(r,w) be a generic
vector in the space-frequency domain; from now on, the frequency dependence is
considered implicit (A(r) = A(r,w)). This vector can be written in a generic

coordinate system as follows:

The triple Fourier transform JF3 is used to map the ¢-th component of this vector

from the space domain r to the spectral domain k:

Fi {Air)} = A(k) = / A(r)e" dr.

R3
Similarly, it is possible to define the inverse triple Fourier operator, which allow us

to return, from the spectral space k to the natural spatial domain r, as follows:
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Fyl {E(k)} = Ay(r) = /R 3 A;(k)e T dk.
The derivation property of the Fourier transform is generalized, leading to:
F3{VA} = —jkA
F3{V-A}=—jk-A
Fs{VxA}=—jk xA,

where:

and each ﬁz is a unit vector for the coordinate system chosen to represent an element
of the spectral domain. This is used to write the Maxwell’s equations (E.1) in the

spectral domain:
ikx H = jueB T
JERTTIER TS (E.2)
—jk X E = —jwpH — M.

These two equations are now written in dyadic form. Let T be the identity dyadic

in the spectral domain; it is possible to write the vector H as:

therefore:

kxH=kx(I-H=(kxI)-H2D. H,
where D is the dyadic defining the transformation:

D H—kxH

Now, it is possible to apply this “trick” to the Maxwell’s equations by isolating the

current densities and by rearranging (E.2) as follows:
—jweE —jk x H=1J
jkxﬁ—jwuﬁzﬁ.

Then, by applying the “dyadics trick” and by collecting everything in matrix form,

the following equation is written:
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E J
£ . =

H M

where the dyadic £, which is multiplied by means of a dot product to the field

vector, is defined as:

—jwel —jk x I
L2
jk x1 —jw/ﬁ
To sum up, at the left-hand side the dyadic linear operator L is applied to E and
H; this equals the electric and magnetic current densities. Since the objective is

the derivation of a representation of the electromagnetic field radiate by the current

densities, the dyadic operator £ should be inverted, leading to an expression like:

E J
-G ,
H M
where:
G-°L
Therefore, let T be defined as:
10
i-| |
0 I

then, since G is the inverse of Z, the following condition is required:

L G=T1T
This last equation is now written explicitly as follows, expanding the definition of

Gg:
—jwel —jk xI| [GE) Glem I 0

jkxf —jwui Gh)  Ghm) 01

where:
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the dyadic G (@) acts on an electric current density J and it produces an electric
field contribution; for this reason, it can be thought as a transimpedance:
its input is related to a current, while its output is dimensionally related to a

voltage;

the dyadic G@©m acts on a magnetic current density M and it produces an
electric field contribution; it can be dimensionally thought as a voltage am-
plification/attenuation, since both its input and output are related to volt-

ages;

the dyadic G®) acts on an electric current density J and it produces a mag-
netic field contribution; it can be dimensionally thought as a current amplifi-

cation/attenuation, since both its input and output are related to currents;

the dyadic G®mm) acts on a magnetic current density M and it produces a
magnetic field contribution; for this reason, it can be thought as a transad-
mittance: its input is related to a voltage, while its output is dimensionally

related to a current.

Derivation of the transimpedance Green’s function

Equation (E.3) is now written as:

—jweGE) — ik x GM) =T
(E4)

ik x Ged) _ jwué(h’j) _

—jweGE™ — jk x G = 0
(E.5)

jk x Glem) _ jwué(h’m) =1

Starting from the second equation of (E.4), the following expression is found:

1

(hj) _ ; (i) .
G jW(kac; ), (E.6)

this is substituted in the first equation of (E.4), leading to:

- 1 -~ ~
_ngc;(e,J) —jk x — (jk « G(Gd)) -1
Jwp

Now, after some manipulations:

(—jwe) (jwp) G — (k) x (jk) x GV = juwp,

which becomes:




E.1. Dyadic Green’s function representation of the electromagnetic field

[w%qﬁ—i— k x (k x ~)] LG = e,
Let A, B be two vectors and let C be a dyadic; the, the following relationship holds:

AxBxC=(A-C)B—-(A-B)C.
By considering A =B =k, C = f, the following equation is found:

kx (kxI)=(k-T)k— (k-k)I=kk— kT,
where:
K =k-k.
So, this can be substituted in our equation, obtaining:
[ng/ﬁ+ kk — kff] LG = jw;ﬁ.

Let k be written in the following coordinate system:

k = kk + a& + 88,

then, a generic dyadic D can be written in this coordinate system as:

b ¢
D= f g| =akk + btka + kB + dak + faa + gaB + hBk + [Ba + mBB.
[l m

S S TS

This general case allow us to say that the identical dyadic can be written in this

coordinate system as:

= — kk + aa + BB.

o O =
S = O
_ O O

This expression is substituted in the equation written before, obtaining:

wepl + kk — k*(Kk + aa + B[Ai')] =

—wepkk + (wep — k) (aa + BB) =

wep 0 0
= 0 wp—kK? 0 ,
0 0 wlep — k?
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where, in the last step, the expression was simply re-written in matrix form. This

is used to prove that:

wep 0 0
0 wep— k2 0 - GE) = joul.
0 0 wrep — k2
Finally, it is possible to write:

-1

wrep 0 0

GE) =jwu 0  wlu—k? 0

0 0 w2ep — k2

The inversion of this matrix is straightforward, since it is diagonal:

-1 -

5 0 0
w2ep .
Gled) — _; - 0 1
G Jon wlep — k? )
0 0
i w2ep — k2 |
Let G be:
-1 -
5 0 0
w2ep )
C py —N(e’j) = — = 0 -
G G Tl w2ep — k? )
0 0 —
i w2ep — k2|
L ik "~ (aa+BB)
=— ——— (aa ;
w2ep w2ep — k2 ’
therefore, we found that:
G = —juuG(k). (E.7)
The dyadic G is rewritten as:
Gl =~ k- (aa + Bp)
w2ep w2ep — k?
1 1 1 =~
=— kk kk — ———1
wlep * wrep — k? wlep — k2
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1

kK E ——
g(k) k% — w2ep

indeed, g does not depend on the entire k vector, but only on its first component,

which is the one along the direction of the unit vector k. So:

~, 1 ~ 1 1 ~—
Gk) = —1 — kk =
(k) k? — w?ep * (w%,u — k2 w%u)

1 = 1 k? — w?ep oo
= 1 —1—— | kk =
k? — w?ep + k? — w?ep ( w2e )

1 ~ 1 k? ~~
= I- kk =
k? —w?ep k? —wlepw?ep

U iR
k2 — w2ep k2 —w2ep

This becomes, grouping k = kk and substituting g(k):

w2ep

G(k) = {ﬂ M} (k) (E.8)

Then, by applying F; ', the following expression is obtained:

G 2 7 {60} = |14 5] a0

w2e

where g(r) is the so-called scalar Green’s function, which equals

e_jk()r

o) & F {50} = S = glr). (E9)

This expression depends only on r, which is the radial coordinate of a spherical
coordinate system in the spatial domain; in other words, the scalar Green’s function
depends only on the distance from the origin of the coordinate system, not on the

direction. The term kg has been implicitly defined as:

this definition can be extended for a homogeneous medium with different dielectric
constant or magnetic permeability. Recalling the definition of the spectral domain
transimpedance Green’s function (E.7), it is immediately possible to define the spa-

tial domain transimpedance Green’s function as:

GE)(r) £ Fi! {(N}(e’j)(k)} = —jwpuG(r).
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Derivation of the voltage-voltage Green’s function
From (E.6),

- 1 ~ .
B k) = — (ik (e (k
G (1) = - (jhe x G ).

so, by applying (E.7):
G (k) = —jk x G(k), (E.10)

which is transformed in the spatial domain, the following expression is obtained:
GOI(r) £ £ {(;(h,j)(k)} —V x G(r). (E.11)

Expressions of the remaining Green’s functions and duality notes

The remaining Green’s functions are calculated as follows: starting from the first
equation of (E.5), Gem) ig derived, and substituted in the second equation; then,
with very similar manipulations, for the spectral domain, the following expressions
are obtained:

G0 (k) = —jweG(K) (E.12)

G (k) = jk x G(k). (E.13)

By applying the inverse triple Fourier transform to the expressions (E.12) and (E.13),
the following spatial domain expressions are obtained:

GO (r) = —jweG(r) (E.14)
G (r) = —V x G(r). (E.15)

E.1.1 Electric Field and Magnetic Field integral expressions

From the previous sections, the following expressions were obtained:

{ E(k) = G (k) - J(k) + G™ (k) - M(k) (E.16)

H(k) = G®)(k) - J(k) + G™™ (k) - M(k).
From these equations it is possible to derive the expressions of the electric and

magnetic field in the space domain by applying the inverse triple Fourier transform
to each component of E and H. The result is:
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{ E(r) = GC(r) - J(r) + G™(r) - M(r) (B.17)

H(r) = G () T 3(r) + GO (r) T M(r)

where the symbol * denotes the convolution by means of the scalar product; given
the dyadic D(r) and the vector A, in carthesian coordinates, this is:

*

D(r) - A(r) = g Dr—r') - A)dr =
= /// Dx—ay—y,z—2") Ay, 2")da" dy' d2’
R3

E.1.2 Mixed-Potential Integral Equations
Electric current density contributions

In the previous section the expressions of the electric and magnetic fields based on
the dyadic Green’s function formalism were derived for the homogeneous space. In
this section an alternative formulation, based on the definition of potential functions,
will be derived.

All the operators involved in these formulations are linear; therefore, let M = 0,
initially; by this way, only electric currents can produce the electromagnetic field.
In a second step, the dual hypothesis will be assumed to complete the formulation;
then, superposition will be applied. Recalling the expressions (E.16) and (E.8), the
electric field in the spectral domain is written as:

E(k) = G(k) - J(k) = —jwpG (k) - J(k) =

— o [T+ 2901 ) G0 -

= —jwpg(k)J(k) — jwp—— (—ik)(—jk) - J(k)g(k).

w2ep

The continuity equations are reported in the following:

V- -J+jwg =0
V- -M + jwgn =0,

where ¢., ¢, are the charge densities. These equations are re-written in the spectral

domain:

—jk-J+jwi. =0
— ik - M+ jwm = 0.
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By substituting the first continuity condition in the spectral domain in the expression
derived above,

k-J=uwq,
SO:

B(k) = —jwpg(k)I (k) — = (—ik)F(k)G (k).

3

The inverse triple Fourier transform of these expressions is:

() = ~in [ gl =360 ax' =29 | [ gt = aw)ar|.

The integrand have two variables, but the integration is performed only with respect
to r’; therefore, the output function will be dependent on r. The following quantities

are defined:

A(r) = ,u/Rs g(r —r")J(x') dr’ (E.18)
a(r) = | [ [t = )i, (E.19)

where A(r) and ®(r) are the vector and scalar potentials. Therefore, E(r) is ex-

pressed with the mixed-potential integral formula as follows:

E(r) = —jwA(r) — VO(r). (E.20)

The V operator applied to the scalar potential ® acts on the natural domain r,
not on the integration variable r’; therefore, it can be taken in the integral sign, if

necessary.

Physical interpretation of the potentials

The MPIE can be derived in another way, considering the following Maxwell’s equa-

tions in absence of magnetic sources:

(V x E(r) = —jwuH(r)

V x H(r) = jweE(r) + J(r)
V- (uH(r)) =0

V- (¢E(r)) = ge(r).

Since:
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E.1. Dyadic Green’s function representation of the electromagnetic field

V- (uH(r)) =0,

the field pH is solenoidal; mathematically, this means that yH can be written as

the curl of another vector, which is the vector potential; so:

pH(r) = V x A(r),

or:

H(r) = /%V X A(r).

Now, this is substituted in the curl of the electric field, leading to:

V x E(r) = —jwV x A(r),

so, by using the linearity of the curl operator:

V x (E(r) + jwA(r)) = 0.

Since the curl of this vector equals zero, it is irrotational; therefore, it can be written
as the gradient of a scalar potential ®:

E(r) + jwA(r) = =VO(r),

SO:

E(r) = —jwA(r) - Vo(r),

which is exactly the same formula that was found manipulating the Green’s func-
tion formulation. These calculations provide A(r) and ®(r) with a physical in-
terpretation: A is the vector such that its curl provides the magnetic induction
B(r) = pH(r); ®(r) is the scalar potential, and its gradient equals the electric
field, plus the vector potential contribution. Moreover, in the electrostatic case, i.e.,

w — 0,

E(r) = —Vo(r).

In this case, ®(r) is also called the static potential of the problem. By working on
the magnetic field integral equation expressed, it is known from (E.16), (E.10) and
(E.8) that:
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H(k) = G®)(k) - J(k) = —jk x G(k) =

= o [T+ EE 0 g 3o,

The second term of the sum equals zero; indeed:

il ¢ [(~1H(—K)] = [(~3k) x (~k)] (~ik) = 0.
So:

H(k) = —jkg(k) x J(k).

This can be re-transformed in the natural domain, obtaining:

H(r) = Vg(r) x J(r) = / [Vg(r —r)] x J(r')dr/, (E.21)
R3
where the symbol % denotes a convolution integral by means of a vector product.

The previous result is not surprising; indeed, it was proved that:

H(r) = %V x A(r),

so, it was simply possible to use this formula to write the MFIE as a function of
potentials; now, the result has been found by another way.

The electric field generated by an electric current density has two contributions:
one given by the vector potential A(r), and one given by the scalar potential ®(r).
In this case the scalar potential does not provide any contribution.

Magnetic scalar and vector potentials W(r) and F(r) can be defined as well as
the electric ones; the steps aimed at deriving these quantities are very similar to the
ones used for the electric quantities. The starting point are the following Maxwell’s

equations (with only magnetic current contributions):

(v x E(r) = —jwuH(
V x H(r) = jweE(r)
V- (#H(r)) = —gu(r)
V- (eE(r)) = 0.

r) — M(r)

\

Helmholtz equations for the potentials

Considering the following Maxwell’s equations,
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it has been found that the scalar potential ®(r) has been defined as the scalar

function satisfying the following property:

E(r) + jwA(r) = —=V®(r),

and:

H(r) = %v x A(r).

It is possible to use the remaining Maxwell’s equations to obtain additional results

concerning the potentials; indeed, from the curl of the magnetic field,

V xH(r) =V x V x A(r) = jwueE(r) + J(r),

but:

VxVxA()=VV-A(r)— V?A(r).

So, by re-writing E(r) using the expression dependent on the potentials, we have:

VV - A(r) — V2A(r) = jwpe(—jwA(r) + VO(r)) + puJ(r).
Now, let ko = w,/ep; then:

VV - A(r) = V2A(r) + kjA(r) — jwepVe(r) + puJ(r),

which can be re-written as:

V2A(r) + K*A(r) = —pJ(r) + V (V- A(r) + jwep®(r)).

This is a Helmholtz equation, less than the gradient term at the right-hand side.

From the divergence of the electric displacement the next equation follows:

V- (€E(r)) = g(r),

which becomes, by substituting the expression of the electric field as function of the

potentials:

219



E. Appendix of “A boundary-integral method for lens antennas”

V- [e(mjwA(r) = VO(r))] = ge(r),

so:
-V (eA®) - V- V() = L,
and:
V20(r) = —jwV - A(r) — qeir).
Now, by adding k2®(r) at both the sides:
2 2 _ _Qe<r) . 2
Vedb(r) + kiP(r) = . jwV - A(r) + k®P(r),

which, re-arranging some terms, is:

V20(r) + ki ®(r) = —@ —jw (V- A(r) + jweud(r)) .

Also this equation is similar to the Helmholtz one; moreover, it is observed that the
two equations are coupled, since there is a common term Y, which involves both the

vector potential and the scalar potential:

X =V -Afr) +jopd(r).

If x = 0, the two equations are independent. The quantities A(r) and ®(r) are not

defined in an unique way; indeed, if:

Al(r) = A(r) + Vi(r),

where 1) is a generic scalar function,

VxA'(r)=VxA([r)+V xVy(r)=V xA(r).

In fact, the second term is zero, due to the property of the gradient of being an
irrotational field. So, it is possible to force x = 0; this choice is called Lorentz
gauge, which is a transformation that maintains invariant the result. With this

choice, the differential equations become:

V2A(r) + k3A(r) = —pd(r)

Ge(r)

V20(r) + ki®(r) = — .

These are a vector and a scalar Helmholtz equations.
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It is possible to observe that both ®(r) and g(r) are satisfying the Helmholtz
equation; indeed, starting from the triple Fourier transform of (E.9), the following

expression is obtained:

which becomes, after an inversion:

— [(=ik) - (—ik) +w?eu] g(k) = 1,
which is, in the spatial domain (applying the inverse triple Fourier transform to each
side):
Vg(r) + kgg(r) = 6(x).

This is the same Helmholtz equation previously defined. This show why g(r) is called
scalar Green’s function: it actually is a Green’s function, of the scalar Helmholtz
equation. A final observation: using the Lorentz gauge, it is possible to obtain E(r)

as a function of the vector potential A(r) only; indeed:

V(V-A(r) + jwped(r)) =0,

SO:

V2A(r) + jwpeVe(r) = 0,
which means that it is possible to derive V®(r) as:

1
Vo(r) = —ngvv - A(r).

This can be substituted in the expression of E(r):

1

E(r) = —jwA(r) — V&(r) = —jwA(r) + oen

VV - A(r).

This means that, instead of using the expressions that have been found using the
Green’s function formalism applied to the Maxwell’s equations, it is possible to
derive the expression of the vector potential for a given source, and then apply
this formula in order to derive the electric field. By applying the duality theorem
described in the following sections, it is possible to obtain the very same results also

for the magnetic scalar and vector potentials.
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Magnetic current density contributions

The following duality theorem holds:

A+—F
—l > €
—Ge < (m
—J+— M
E+— H,

where F' is defined in such a way that:

V x F = —¢E(r).

Starting from the formalism of Green’s functions, the following MPIE formulation

can be derived:

H(r) = —jwF(r) — VI(r), (E.22)

where W(r) is the magnetic scalar potential, dual to ®(r):

VU(r) = jwF(r). (E.23)

The vector and scalar potential related to magnetic current density contributions

are defined as:

F(r)=¢ /R3 g(r—r")YM(r") dr’ (E.24)
1 / / /
U(r) = M [/RS g(r —r)gm(x") dr'| . (E.25)

Final expressions of the mixed-potential integral equations

In this subsection, the MPIE expressions are summarized. The contributions related
to the electric vector and scalar potentials, and the ones related to the magnetic
vector and scalar potentials were derived separately; however, since the Maxwell
equations are linear, it is possible to add these two contributions, applying the

effect superposition:
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where:

E(r)Y = —jwA(r) — VO(r)
H(r)0) = %v < A(r)
H(r)™ = —juF(r) — V¥(r)

E(r)™ = —év x F(r).

Therefore, substituting these four expressions in the previous two,

E(r) = —jwA(r) — VO&(r) — %V x F(r)

H(r) = %V X A(r) — jwF(r) — V¥(r).

To obtain the actual integral equations, it is finally possible to substitute the ex-
pressions of the potentials (E.18), (E.19), (E.24) and (E.25):

1
E(r) =— jwu/ gir =) )dr' — -V g(r — ") gqe(r") dr'+
R3 19 R3

- /RS [Vg(r —r")] x M(r") dr’

H(r) :/R3 [Vg(r—r")] x J(x')dr! —jwe/ g(r —r")M(r") dr'+

R3

1
==V | g(r = r")gu(r')dr’,
B JRrs

where the terms E®™)(r) and H™)(r) were found by duality. These equations have
four unknowns: the electric/magnetic current densities, and the electric/magnetic

charge densities. However, these two groups of unknown are related by the continuity

equations; therefore, since:

Go(r) = _j;v -J(r)
(1) = -7 - M(r),

it is possible to write the final expressions of the MPIE as:

223



E. Appendix of “A boundary-integral method for lens antennas”

E(r) = — jwu /RS g(r —r)J (') dr’ + ,LV g(r —r" YV - J(x')dr’'+

jwe R3
— /RS [Vg(r —r)] x M(x") dr’ (E.26)
H(r) = /]RS [Vg(r—r")] x J(x') dr’ — jwe /]1@3 g(r —r")M(r") dr'+

1
—v /R gl =)V M) (E.27)

The magnetic field equation can be found from the first one by duality and vice-

versa.

E.1.3 Summary of the results derived in the previous sec-
tions
In this section the most significant results derived in the previous sections will be

resumed.

Spectral domain Green’s functions

—~

E(k) = G (k) - J(k) + G©™ (k) - M(k)
N o ~ - _ (E.28)
H(k) = GM (k) - J(k) + G (k) - M(k),
where:
G (r) = —jwuG(r)
G™) (k) = —jk x G(k)
G (k) = —jweG (k)
G (k) = jk x G(k),
where:
= = (k) (k)| -
Gao = [T+ S0 ),
and:
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Electric and magnetic field integral equations

These are the EFIE and MFIE equations found using the Green’s function formalism.

r) = GE(E) T J(r (em) (p) 7 r
{E() G a(e) + @) M) -
H(r) = GO) F3(r) + GO () E M),
where:
G (r) — juopG(x)
GO (r) = —jweG(r)
G®™)(r) =V x G(r)
GEem(r) = -V x G(r),
where:
G 2 7 {60} = |1+ 2] a0
where:
o) 2 F ()} = S = g,
and:

A
ko = wy/Eopto-

These expressions have been elaborated, in order to relate them to the MPIE; the
most significant results about these equations can be found in (E.26), (E.27). These

equations are the starting point for the formulation of integral equations.

E.1.4 Dyadic Green’s function in spherical coordinates
Explicit calculation of the Green’s function in spherical coordinates

The expression of the dyadic G is:

\AY%
G(r) = lI + ?} g(r), (E.30)
where ¢(r) is the scalar Green’s function for the homogeneous space:
e B.31
o) =—. (£31)

and k is the homogeneous space wavenumber:
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k= w\/Z/. (E.32)

In order to proceed with the explicit calculation of the dyadic Green’s function in
the spherical coordinate system it is possible to define the vector A as the gradient

of g¢:

A =Vy,

then it is possible to define the dyadic B as the gradient of the vector A:

B = VA.

The components (€1, &, £3) used to describe the position of a point in the space have

to be referred to the spherical coordinates system; therefore:

(517 527 53) £ (T’, 197 90)

SO:

Then:

The Leibnitz rule is applied, leading to:

0 (3d9) _; 0 (dg)  dgoF
o6\ dr ) o \dr dr ¢’

so, recalling that, for the spherical coordinates system, hy = 1, hy = r, hg = rsin¢:

B __[dgor 0 (dg\.
B =VA = {55_‘_5(_)1}_{—

rsind |[drde = Op \dr /|’
Now, recalling that:

T = Xsint cos ¢ + ysind sin ¢ + z cos ¥,
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it is apparent that:

or _
or

Indeed, T does not depend on r. Moreover,

0.

8/\ o~ ~ . P .
a—; =X costcosy +y cossin p — zsin v,
and:
or ~ . : ~ .
— = —Xsin¥sin ¢ + y sin ¥ cos ¢.
dp
But, since
9 = X cos ¥ cos p + ¥ cos v sin p — zsin v,
and
P = —Xsiny + ycosy,
we have:

or

E—O

or —~
8_19_19
%zcﬁsinﬁ.

Before substituting this in the expression of the operator B, it is still necessary to

calculate the expression of the derivative of the scalar Green’s function with respect
to r:

dg _ d [Le—jkr]

, 1
dr — dr |4nr - {Jk * ;} a(r).

Since this term depends neither on ¢ nor on ¥, the next expression is obtained:

0dg _ 0dg _
oddr  Odpdr

and, for what concern r:
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+§ l— (jk:+ %) g(r)@—i—()} -

So, by sorting all these terms and substituting them in G, it is possible to find,

recalling that I = % + 99 + $:

] _

2k 2
{rr+1919+50s0)+rr( k* + ik+ﬁ>

(1 1 1
99 (—— (ik+ - 0@ (—— (jk+ -
99 (g (7)) 00 (i (00

% 2\ j 1\ <~
= || =4 — l—=——— 199
Kkr * k2r2> e ( kr k2r2) +

This is a dyadic, and so it can be written compactly in matrix form, considering T

equivalent to an index equal to 1, 9 equivalent to an index equal to 2, @ equivalent

to an index equal to 3; let us define:

I

kr  k%r2

| Alr)
2

A(kr) &
B(kr) &

so, this becomes:

(E.33)

(E.34)
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A(kr) 0 0
G(r) = 0 B(kr) 0 |g(r). (E.35)
0 0  B(kr)

A similar procedure is applied to the term V x G(r). The first step is to recall:

V x G(r) = Vg(r) x L.

Moreover, we have already shown that:

e Ve el
Vg——{t]k—%}r—t]kr [k?" 1}9(7“).

So, by defining the term C(kr) as:

Clhr) 21— (E.36)

since

it is possible to calculate T x I as:

=)

TxI=T7x [ﬁﬂ?}ﬁw@@ —TT+T X 99+ T x 3P =0+ PO — 9P,

because T X T =0, T X 9 = P, TXp= —1A9; so, it is possible to define the dyadic G’
as:
0 0 0
G'(r)=VgxI=—=jk|0 0 —=C(kr)| g(r). (E.37)
0 C(kr) 0

Resume of all previous results

In the previous section several results have been proven.

G (r) = —jwpG(r)
G (r) = —V x G(r)
G™)(r) =V x G(r)
GI™(r) = —jweG(r),

where:
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A(kr) 0 0
G(r) = 0 B(kr) 0 g(r),
0 0 B(kr)
and:
0 0 0
G(r)=VxG(r)=VgxI=—jk |0 0 —C(kr)| g(r),
0 C(kr) 0
where:
2
A(kr) = T + 12,2
Bkr) = 1 — A7)
' 2
1
C(kr) =1 e

Transformation of coordinates
Given a generic vector A(r), this can be written in cartesian coordinates, as well in
spherical coordinates:

Alr) = AR+ A5+ A7 = AT+ Agd + A@. (E.38)

These expressions are now written as row-column products:

A, A,
A(r):[i 5 a] A, :[? 9 @} Ay
A, A,

The objective of this section is to transform the vector components from one coor-
dinate system into another, and then to extend this procedure to dyadics.

By inspection, the following expressions are written:

ﬁz?sim?cosgo—i-ff?cosﬁcosgo— P sin
¥ = Tsindsin ¢ + 0 cos 9'sin ¢ + B cos ¢
7 =Tcosd — U sinv.

Similarly:
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T = Xsind cos @ + y cos ) cos p — zsin
Y = Xsindsing + ¥ cos ¥ sin ¢ + Z cos
P =Xcost — ysind.
The last three equations can be written in matrix form:
sincosp cosvcosy —sing

[? 9 Q?D:| = [ﬁ y ’z\} sindsingp cos¥sing cosy | . (E.39)
cos v —sin 0

Now, it is possible to define the change-of-coordinates matrix P as:

sind cosy cosvcosyp —singp
P £ |sindsing cos¥sing cosg |, (E.40)
cos v —sin v 0

and so:

A, A, A,
[§ §a] A, :[??9 @} Ay :[i §2}P Ayl
A, A, Ay

since in both terms there is the row vector with X,y and z,

A, A,
A, Aw
Since
P!=pP"

where T denotes the transposition of the matrix, it is possible to write also the

inverse transformation:

A, Ay
Ag| =P" A, ]. (E.42)
A, A,

Now, it has been shown how to transform the components of vectors from one

coordinate system to another, focusing on the spherical-to-cartesian case.
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Transformation of dyadics

The rule derived in the previous subsection will be applied to dyadics. A dyadic is
defined as:

So, in spherical coordinates:

A'I‘B'I‘ ATBﬂ ATBQO
D (spherical) _ AyB, AyBy Aﬁng )
A,B, A,By AyB

pe

or, in cartesian coordinates:

D(cartesian) _ Ay B:(: Ay By Ay Bz
Az Bx AZ By Az BZ

This last dyadic can be written as:

T
A, B, A,B, A,B, A, B,
A,B, AB, AB,| = |4, B, ,
A.B, A.B, A.B, A, B,
so, by applying the transformation above,
T T
Ay B, A, B, A,
A B | =[P las|||P|Bs| | =P |4]||B Bs B.||P"=
A, B. A, B, A,
A.B, A.By ADB,
=P |AyB, AyBy AyB,| P
A,B, A,By A,B,
So:

D(cartesian) —P D(spherical)PT.

It is useful to calculate explicitly the components of D{rtesian) with the P defined in
the section above. By using a symbolic calculator, it is possible to obtain, starting
from the D = G case:
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D, 0 0
D=|0 Dy 0
0 0 D,

D,, = D,, cos® % sin? ¢ + Dyy cos? © cos? ¥ + Dy, sin? ©
Dy, = —cospsinyp (DW — Dyg cos®> 9 — D,, sin’ 19) =Dy,
D, = cospcost¥sint (D,, — Dyy)

Dy, = Dy, cos? @ + Gyg cos®> ¥sin® ¢ + D,, sin? ¢ sin® ¢
D,, = cosUsinpsin (D,, — Dyy) = D,

D,, = D,, cos® 9 4+ Dygsin® v

Moreover, the other useful case, for D’ = V x G’:

where:

0 0 0
D=0 0 Dy, |
0 D, 0
, 1 . / /
D, = —3 sin(2¢) cos ¥ (Dy,5 + Djy,,)
Dl = —cosd) Gy sin® @ — Dy, cos™ )
D), = D ysinpsiny
Dy, = —cos¥) (=D, cos” p + Djy, sin’ ¢)
1.

D, = 3 sin(2¢) cos ¥ (Dl,5 + Gy,,)
D, = =D/, cos psiny
D, = Dj, sinpsin
D.,, = —Dj, cos psind
D, =0.

These calculations have been performed using the following MATLAB script:

clear

close all

clc

%—— This script calculates explicitly G and Gprime in the cartesian
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pA coordinate system; this can be used to calculate efficiently

%  (vector implementation) the components of the dyadic Green’s function.
b

% This script is "specialized" in order to consider the (complete) free
% space dyadic Green’s function; so, Grt=0; Grp=0; Gtr=0; Gtp=0; Gpr=0;
% Gpt=0; however, by removing the constraint, this script can be

%  generalized, leading to much more complex expressions.

h

%  Grr=G_{r,r}; Grt=G_{r,theta}; Grp=G_{r,phi} (and so on)

syms Grr Grt Grp Gtr Gtt Gtp Gpr Gpt Gpp
syms Gprr Gprt Gprp Gptr Gptt Gptp Gppr Gppt Gppp %—- Gprime components
syms theta phi

P=[
sin(theta) .*cos(phi),cos(theta) .*cos(phi),-sin(phi) ;
sin(theta) .*sin(phi),cos(theta) .*sin(phi),cos(phi) ;
cos(theta),-sin(theta),0
]

%-—- G calculations

Grt=0; Grp=0; Gtr=0; Gtp=0; Gpr=0; Gpt=0;

Gspherical=[Grr Grt Grp;
Gtr Gtt Gtp;
Gpr Gpt Gpp
]

Gcartesian=P*Gspherical*P.’;

Gxx=simple(Gcartesian(1,1))
Gxy=simple(Gcartesian(1,2))
Gxz=simple(Gcartesian(1,3))
Gyx=simple(Gcartesian(2,1))
Gyy=simple(Gcartesian(2,2))
Gyz=simple(Gcartesian(2,3))

Gzx=simple(Gcartesian(3,1))
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Gzy=simple(Gcartesian(3,2))

Gzz=simple(Gcartesian(3,3))

%»—— Gp calculations

Gprr=0; Gprt=0; Gprp=0; Gptr=0; Gptt=0; Gppr=0; Gppp=0;

Gpspherical=[Gprr Gprt Gprp;
Gptr Gptt Gptp;
Gppr Gppt Gppp
]

Gpcartesian=P*Gpspherical*P.’;

Gpxx=simple(Gpcartesian(1,1))
Gpxy=simple(Gpcartesian(1,2))
Gpxz=simple(Gpcartesian(1,3))
Gpyx=simple(Gpcartesian(2,1))
Gpyy=simple(Gpcartesian(2,2))
Gpyz=simple(Gpcartesian(2,3))
Gpzx=simple(Gpcartesian(3,1))
Gpzy=simple(Gpcartesian(3,2))
Gpzz=simple(Gpcartesian(3,3))

E.1.5 Dyadic Green’s function in cartesian coordinates

In this section the Green’s function of the homogeneous space will be calculated
directly in cartesian coordinates, by evaluating explicitly the derivatives that arise

from the operators involved. Once again it is useful to recall (E.30):

G = 1+ 57 | ot

where r is the euclidean norm of the vector r; in cartesian coordinates, it can be

written as:

r=|lr|| = Va?+y?+ 22

So:

e—jkr«/a:2+y2+z2
g\r) =g\r,y,2) = :
) ( ) A/ x? + y? + 22

(E.43)
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Let ¢ be a scalar field; then, VV¢ can be written as:

09 0  _0¢
Vo= Xax +y8y +Z82’

and so:

(ﬁ@ 132

0 (.0¢p __0¢
—(xa—x—f—ya—y—l—za

- —i-/Z\%
ox y(?y 0z

_0¢
%)

)+

Now, it is possible to define a dyadic by expanding these products:

0% 0%

. 0%¢

=X _+Xy8x8y+xz

X8x2
o P O
TyX Oyox

0% 0%

82¢

0%

0x0z +

+yya—y2 +yz8y6z+

e 0z0x +zy 0z0y e 022

which can be written in matrix form, as follows:

0? 0? 0?
0x? O0xdy 0x0z
0? 0? 0?

)

— g o.

Oyox
0? o)
| 020x 020y

2
8y2 8%2)?2

This dyadic is used to represent the G(r) dyadic; indeed, by substituting in the

previous expression, the following equation is found:

O
k? 0x? k2 0x0y k? 0x0z
G(z,y,2) = 1 62 1+i82 i82
AR Oyox k% 0y? k%2 0yoz
1 1 1o
| k20202 k2 020y k2 022
r 2 2 2
K24 0 0 0
0x?  OJxdy 0x0z
1 0? K2 0? 0?
k2| Oydx oy?  0yoz
0? 0? 2 o?
| 020x 020y * 022

9(z,y,2) =
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E.1. Dyadic Green’s function representation of the electromagnetic field

Now, it is necessary to calculate the Green’s function contributions relative to V x
G(r). Let us consider the V x G(r) = Vg(r) x I operator applied to a generic vector
A(r):

H(r) = Vg(r) x A(r).

The objective is to obtain a dyadic that has to be multiplicated scalarly by A. So:

_0g N N N
ya—y + za} X [A;Xx+ Ay + Az] =

+
o< (9 << (99 <o~ (99
_xxx(axAx)—l—xxy(axAy)—|—X><z<axAz>—|—
dg -~ ~(0g ~_ (99
ayAgc)+y><y(ayAy)+y><z(ayAZ>+

+2x§(@Ax) +2x§(@Ay) +zZx2z @AZ> =
z z z

= %zy - %y - a—yzx + —yxz a—yx — axy
[A. X+ Ay + A.z] =
- _ﬁ ﬁ -
dz 0y A,
0 0
=5 0 o la|A (E.45)
oo L
| Oy Ox

Explicit calculation of the terms of the dyadic Green’s function in carte-

sian coordinates

The expression of the dyadic Green’s function of the homogeneous space is derived.

Starting from:

e—jkr\/a:2+y2+z2
g(l’, Y, Z) = )
A/ 22 4 y? + 22

it is possible to calculate the partial derivative with respect to the variable z:

dg 0 (e—jkr\/m> 1 N oikry/at g+ 2? 1
613_8{[' 477 + /$2+y2+22 47 /l~2+y2+22 ’

For Leibnitz’s rule

237



E. Appendix of “A boundary-integral method for lens antennas”

d
@ef(z) — f’(x)ef(””),

follows

99 _ 1 Vol 2z n
ox  A4Ar /x2—|—y2—|—22 2 22 4+ 2 + 22
1 o ik/E2 222

— =2z =

2 3
4 (x/xQ + 92 + 22>

1 1
= Jk + 2 2 2 g(xvya Z)
Vrz+y2+22 rrtyt+z

It is defined a function f,(x,y, z) as:

1 1
; 2 2|k E.4
f(xu%Z) ZL’(J \/m+x2+y2+22>’ ( 6)
S0,
0
52 = fala,y.2)gla.y, 2). (E47)

Since the scalar Green’s function has almost the same dependence on z, y and z, it

is straightforward to prove that:

)
o0 = Fe.y, 2)glay,2)
y (E.48)
% _ ey, 2)gle,v,2)
az - z ) y? g ) y? )
where:
& . 1 1
fy<x7yvz)_ y(‘]k\/m—i_sz—f‘yQ—’—ZQ)
(E.49)

1 1

A .

z\4ty & = - k .
fil@.y,2) Z<J \/m+x2+y2+z2>

With these terms, the G’ = V x G dyadic terms are known. For what concerns the

G matrix, it is still needed to calculate the second derivatives. So:

dx*  Or

0%g 0 (0g 0 Ofs dg
(52) = o () = Sg 4 1.2 (E.50)

where:
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Of: ) 1 1 o1 2x 222
5 = Ik — e TIkTg 5 T P
ox Vi 4y 22 P+t +z 2(x2—|—y2+22)5 (22 + y2 + 22)

jka? 222

+ . E.51
(22 +y2+22)2 (@2 +y2 422 (0

1
- Efx(xayaz) +

By exploiting once again the dependence of the formula on the variables, it can be

written that:

af, 1 jky? 2y
a_y:_fy(x7y7z>+ §+ ) 9 2\2
y oy (22 +y2+22)2 (22 492+ 22)
- ) (E.52)
of. 1f( )+ jkz n 2z
=—\T Y,z :
0z 2z y (22 + 12 —1—22)% (22 + 42 +22)2

For what concerns the mixed derivatives, it is possible to calculate, for instance:

&g 0 (dyg 8 of, dg  Of,
T oy \or)  ay = 5 = E.

where:

I + 2 2) . (E.54)

It is apparent that:

Ofc _ 0f
dy = 8_xy (E.55)
Moreover, by using symmetries,
afz Jk 2
or ~ "\ @ty t) Tyt 2y
Y (E.56)

afz Jk 2
=Y g T 2 2 22 | °
dy (2242 +22)2 (2 +y*+27)

With this, the entire expression of the dyadic Green’s function in cartesian coordi-

nates has been derived.
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Final remarks about the MoM

The expressions of the integrand functions relative to the radiation integrals have
been written in an explicit form. However, it should be remarked that the end of all
this formulation is to write an explicit formulation for the radiation of the currents

found by means of a method of moments. The following expression is recalled:

*

E(z,y,2) = G (z,y,2) - J(z,y,2) + G (z,y,2) - M(z,y,2)

* *

H(z,y,2) = GM)(z,y,2) " I(x,y,2) + G (z y 2) - M(z,y, 2),
where:
G (z,y,2) " I(z,y,2) = Gz —a' y—y, z—2)- Iy, ) da’ dy d2’
R3
GO (z,y,2) M(z,y,2) = | G (z—a' y—y,z—2) My, 2)da’ dy d='.
R3

The same notation can be applied to the magnetic field. In the method of moments,

the unknown is represented as a linear combination of known functions:

Nfun

J(z,y,2) = Z Jnfn(x,y, 2)
n=1

Nfun

M(l’, Y, Z) = Z Mnfn<x7 Y, 2)7
n=1

where in this formulation the same functions (RWG) have been used as expansion
functions for both the unknowns. The integrals should be calculated keeping into

account these expansions, therefore as:

Ntun
G (z,y,2) " I(x,y, 2) = Z Jo [ GE(x—a y—y, 2—2) £y, 7)) da’ dy d2
n=1 Dy,
Ntun
GE™ (2, y,2) - M(z,y,2) = Z M, G (z —a' y—y, 2z —2) (' y,2) da’ dy d2.
n=1 Dj,

These integrals are calculated on the source domain only, therefore only on the
domain of the n-th basis function, D!. The results are functions varying in the
observation domain. The strategy for the evaluation of these integrals is: for each
point (z,y,z) in which the electric field of the antenna should be calculated, the
entire sum of integrals has to be calculated; so, for each point, it is necessary to

calculate 4 Ng,, integrals (Np,, per each dyadic Green’s function).
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E.1. Dyadic Green’s function representation of the electromagnetic field

E.1.6 Dyadic Green’s function of the hemispace in presence

of a PEC ground plane

In this section the Green’s function of a hemi-space in presence of a PEC ground
plane parallel to the xy plane and placed at z = 0 will be derived. This will be
done by applying the image theorem, which will be discussed and proved, and by
modifying the dyadic Green’s function of the homogeneous space.

Image theorem

Let E', H' be the electric and magnetic fields generated by some current densities J’
and M’; these quantities are defined only in the upper half-space, so for z > 0. Then,
let E”, H”, J” and M” be the fields obtained by applying a reflection transformation
with respect to the z = 0 plane; then, the fields E and H, defined as:

E:E/+E//

(E.57)
H — H/ _|_ H//

are the electromagnetic fields in every point of the space, generated by the currents
J’, M’ keeping into account the effect of the PEC ground plane placed in z = 0.

Proof of the image theorem

This proof is based on geometrical considerations, and the fact that the PEC surface
is a plane is a very strict condition for the application of the theorem. A cartesian
orthogonal system (2',y’, 2') for the fields in the upper half-plane is defined. Since
E’ and H' satisfy Maxwell’s equations,

( OE, OFE] :
oy ov = lwnt— M,
OE! OFE! )
o G = bty
OE' OE] _
P o = —iwnd — M,
dy ox
, , (E.58)
aI{z aHy : ! !
oy an ket
OH! 0H. .
Y i or ey +J,
OH! 0H,
T — : E/ J/.
. Oy oz’ Jwekiy ¥ J

The reflection with respect to the z = 0 plane is now applied to these equations:
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x// — SEI

y' =y (E.59)
S

This transformation is applied to the differential operators in Maxwell’s equations;

by doing this, it is possible to obtain, just grouping properly some — signs:

' %5 + a(a_Ej) — jupH. — M.
Fmy o = ety
%gf/” - %Zf,’ = —jwpH, — M
%I;'IZ + (;()i{i/’) = jweE! + J.
RN S

\ %—Z/“Ic — %];[/; = jweE. + J.,

then, according to (E.59):

( gf,% + gff/f = —jwpH, — M,
ot g = et M,
?95% - gf,‘% = —jwpH; — M;
88[;% + églj% = jweE, + J,
e (O _ ywemy 1,

\ 68_[;,% SO e

These six equations are no longer Maxwell’s equations; however, the components
have not been transformed yet. The transformations of the components should be
performed min such away to obtain equations in the form of (E.58). For example,
it is necessary to put a — sign in front of E] in the first equation, in order to restore
the correct sign; the same thing on E! from the second equation, and so on. In

other words, it is necessary to perform the following step:
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E.1. Dyadic Green’s function representation of the electromagnetic field

(0B, O(-E)

= —jwpH! — M’
o oa jwpH, — M,
8(—E;) aE; . ! /
- B + oz = _JW'UHZ/ B My
J(—E.) 8(—E;) _
_ x — _H/ _M/
ayl/ + 895” +_](,LJ,U,( Z) + ( z)
o(—H!) OH,
_ z [ _El A
ay// + az// Jwé‘( w) ( ‘]m)
aHalc a(_H,;) . / /
oz ox" —jwe(=E,) = (=)
oH!.  OH!
z = jweRk, + J..
\ 8y// oz Jwels, + z

By applying the following transformations of the components:

El'=-E E'=-E, E'=E
H'=H, H'=H,  H'=-H
J=—g S =—J, S =T
MI=M, M/ =M M =-M,

(E.60)

the last equations written become, applying this substitutions:

%l;%/ - Zf,%/ = —jwpHy — M
g g = ] M
1
%Zg - %ZZ}I = jweE! + J!
O O ey
\ %Z/”:”/ - %Z/%l = jweE! + J!,

which are Maxwell’s equations. Therefore, E” and H”, defined according to this

idea, are a maxwellian field. Now, it is possible to define E and H as:
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E (2 y,2) — B (2 Y, —2)
= | B, (2", 2") — E (2, Y, Z’)]
E( )

!

!

!

/

EC/C(ZJ’ yl7 Z/) + El/ 1/7 y Z//)
E(x/jy/jz/) — E;(l’/,yl,zl) E// //7y Z//)
E;(:El, y/’ Z/) E/l /I, y Z”)
H;(I‘/,y/,z) H// 7y Z”
H(x/’y/’ Z/) — Hl (x/ y/ Z) H//( 7y Z”
H/<:U y Z)+H//( //’y Z//

! LE/ y Z/ _’_El(x/ y7_zl)
H

T xla y/7 Z,) + H;,p(x/) y/7 _Z,
- H

Y

H

z

E. Appendix of “A boundary-integral method for lens antennas”
oy, 2) - H(2 Y, =7

)
)
)
(E.61)

This notation is used to specify that the electric and the magnetic field in a point

( )
(l’l,yl,zl)‘f—H;(l’/,yl,_ZI)
( )

(',y', 2"), have two contributions: one from the current densities J’ defined in the
upper hemispace, one from the images J” in the lower hemispace; the same applies
to M’ and M”. The J” and M" contributions are evaluated in (z/,y', —2').

It is straightforward to prove the connection between these geometrical consid-
erations and the presence of a PEC ground plane in z = 0; indeed, it is possible to

observe that E and H are satisfying the PEC boundary condition on z = 0:

E (2',y,0) — E.(2',y,0) 0
E(2,y,0) = |E,(2',y,0) — E,(«/,/,0)| = 0
El(«',y/,0)+ E!(,y,0) 2E (2,4, 0)
H(«',y',0) + H.,(2',y',0) 2H(2',y',0)
H(Z,y',0) = H,(z',y',0) + H,(z',y,0) | = |2H,(2',y',0)
H(z',y',0) — H (2", y,0) 0

The tangent components of the electric field are zero and the z component of the
magnetic field are zero: this is the PEC boundary condition. So, E and H, defined
accordingly to the previous discussion, are the electric and magnetic fields radiated
by currents in presence of a PEC ground plane.

The proof that has been proposed can be used also for the derivation of the trans-
formations of the vector components in order to obtain a PMC boundary condition.
Indeed, by using the same coordinate transformations, but, instead of (E.60), the

following set of component transformations:

E'=E, E'=E B =-E
H!=—H, H/'=-H  H' =H
J=J J=J g ==
M!=-M, M'=-M  M'=M

(E.62)

the image theorem for a PMC ground plane is obtained.
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E.1. Dyadic Green’s function representation of the electromagnetic field

Green’s function for a PEC ground plane

The expression of the electric and magnetic fields are:

E(z,y,2) = G (z,y,2) " I(x,y,2) + GO™(2,y,2) - M(z,y,2) =
L2 EV(z,y,2) + EM(z,y, 2)

H(x,y,2) = G (2,y,2) - I(x,y,2) + G™™(2,y,2) - M(,y,2) =
= HY(2,y,2) + H™ (2,y, 2),

(E.63)

where EW HU are the electric and magnetic field contributions generated by electric

current densities and E™ H™) are generated by magnetic current densities,

E0(2,y,2) = G (x,y,2) - I(z,y,2)
E™(z,y,2) = G (x,y,2) - M(z,y, 2)
HO(z,y,2) = G (2,y,2) " I(2,y, 2)
H™ (2, y,2) = G®™ (2,9, 2) * M(x,y, 2),

(E.64)

where:
G(e’j) (x7 Y, Z) — JWMG(xJ Y, Z)
GO (2 y, 2) = —jweG(a, y, 2)
G(hvj) (x7 Y, Z) = V X G(xv Y, Z)
G(e)m)(x7y’ Z) = -V X G(x7y7z>7
and:

L
oxr?2  Oxdy 0x0z
Gy = | o W D gy
T,Y,2) = — — T, 2
82 82 2
2_'__
| 020z 020y 022
- 9 5 1
VxGay=| L 0 O
o0
| OJy Ox

Now, to find the expressions of the dyadic Green’s function that keeps into account
the radiation contributions by a ground plane, it is recalled that the total electric

field has two contributions: the physical and image ones:
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FU.GND) (z,y,2) = [ U-physical) (z,y,2) + [ U-image) (z,y,—2) =
= G (z,y, z) - IPWsial (g o) 4 GO (g, —z) T IR (5 g 2)
E(m,GND) (.Z', n Z) — E(m,physical) (l’, v, Z) + E(m,image) (1,7 n —Z) —
_ G(e’m) ($’ Y, Z) * M(physical) (l‘, v, Z) + G(e,m) ([L’, Y, —Z) * M(image) (33’, v, —Z)
H(J'7GND) (ZE, n Z) _ H(j,physical) (I‘, Y, Z) + H(j,image) (ZE, v, —Z) =
_ G(h’j) (.T7 Y, Z) * J(physical) (l’, Y, Z) + G(h,j) (ZL’, Y, —Z) ¥ J(image) (I, Y, —Z)
H(m,GND) (Z', n Z) _ H(m,physical) (l’, Y, Z) + H(m,image) (iIZ’, Y, —Z) —
_ G(h’m) (.23, n Z) * M(physical)(x7 v, Z) + G(h’m)(l', v, —Z) N M(image) (.’17, v, —Z).

The image theorem is used to “remove” the ground plane, introducing, instead
of it, the image current densities. Therefore, the space in which all these currents,
physical and fictional, have to radiate, is homogeneous. So, for each contribution, the
homogeneous space Green’s function is used to evaluate the radiation contributions.
To understand how the presence of the ground plane modifies the dyadic Green’s

function, it is useful for instance to consider the following product:

G(z,y,—2) . J(image)(x,y, —z) =

S
828Q32 axa%Q 83?2 —Jm(aj7 y) _Z)
2 . — — =
o k t57 30 9(x,y, 2) | =Jy(z,y, —2)
62 82 2_'_8_2 Jz(x,y,—Z)
| 020z 020y 022 |
Lo e
628952 81:8(%2 8g§z -1 0 0 Jo(x,y, —2)
= 2 —_— —_— R
g VT ag s 0 =1 0] g(z,y,2) | Jy(z,y,—2)
62 82 2+8_2 0 0 1 Jz('ray?_z)
0z0x 0z0y 0z?

To obtain a single dyadic Green’s function, the terms G and V x G are now modified.
Let D be:

-1 0 0
D20 -1 0
0 0 1

So, it is possible to calculate the dyadic G that keeps into account the effect of the

ground plane as:
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GNP (z,y,2) = G(z,y,2) + G(z,y, —2)D;

the same applies to V x G:

V x GNP (z,y,2) = V x G(z,y,2) + V x G(z,y, —2)D.

Therefore, the following quantities are defined:

GEIOND) (1 0 o) — jwuGEND) (1 . )
GImOND) (g g 2) = —jweGHNP) (3, y, 2)
GOICND) (3 gy 2) = V x GIEND) (14, 2)
GEmED) (g 2) = T GO (g, )

and, finally:

*

ECD) (. y, 2) = GEIEND) (g gy ) " I (2, y, 2) + GE™OND) (g 2) T M(x,y, 2)

HOD) (3, 2) = GEIOND) (3 1y )~ J(,y, 2) + GEmOND) (3 1y 2) " M(2,y, 2).
(E.65)

E.2 Green’s functions of stratified structures

E.2.1 Spectral Green’s functions representations

In the previous sections the homogeneous space Green’s function has been derived
by transforming the wave equations into the spectral domain by means of the triple
Fourier transform, by applying some manipulation and finally by returning in the
spatial domain by applying the inverse operator; this approach is very convenient
for the homogeneous space problem.

This procedure can not be applied to more complex geometries, such as stratified
structures; considering a cartesian coordinate system, they have homogeneous media
in the z and y directions, whereas ¢, changes abruptly along z; dielectric slabs
are an example of these structures. In these situations, Maxwell’s equations are
transversalized with respect to z, and a double Fourier transform is applied to the
transverse components; then, the calculation of the spectral domain Green’s function
is reduced to the calculation of voltage and currents on transmission lines. By this

way, the two spectral domain variables k, and k, are defined; let:

k=K + k2, (E.66)
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and:

K2 = k7 — k2, (E.67)

zZ

where:

ki = W4/Ei€olho, (E68)

and ¢; is the dielectric constant of the i-th stratification. The wavevector component
k.; is the propagation constant of the transmission line in the i-th stratification.
The characteristic impedances of the transmission lines relative to the TE and TM

polarizations are:

Zosi = Ziz Zo = 7,2, (E.69)
kzi kz
where:
1
7 Ho (E.70)

~VaV e
In the following the expressions of the dyadic Green’s functions in the spectral

domain are reported [73], [74]:

e Electric field generated by an electric current density:

G (ky, ky, 2) =

__ k’?gVJTM + k’;VjTE (‘/JTE _ ‘/jTM)kxky ZEVTM -
2 2 ko
(x/jTE _ ‘/;TM)kxk?y B kiVJTE + kz‘/;TM Z@VTM
2 2 kom
ke k Z (ki :
Z?]J.TM Z%JJTM - <Zi[£M —J5(z))

(E.71)

e Magnetic field generated by an electric current density:
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GO (ky, ky, 2) =

G (k,, ky, 2) =

G (ky, by, 2) =

- ( 7TM TE 21TE 2 7TM

k¢ k¢
B kgleM + kEIJTE ([jTE o [jTM)kzky
k¢ k¢
ﬁ TE _ ﬁ "TE
- kZ ) kZ )

e Electric field generated by a magnetic current density:

[(VIM VB ke, R2VIM + BV

k¢ k¢

FaVah RV (V" = ViMkak,

ki ki
k k
—Z-L ™ AR
. ko ko

e Magnetic field generated by a magnetic current density:

current density M.

[ REITE 4 R2ITM (M [T g ks e
k? k? kZ
(In" = 15" kakey _k:%IiM + kifiE ﬁI.TE
k2 k2 kZ™
Kz o ru ky o 1 (K
kZVm kZ Vim kZ \kZ

-3))|

The term Vj is the voltage evaluated in z = 2, due to the current generator that

(E.74)

models the electric current density J; similarly, V,,, is generated by the voltage source
modeling the magnetic current density M. The term I; is the current generated by

the electric current density J, whereas I, is the current generated by the magnetic
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€1

- - - - - - <+-— - 2t

+ src

src

&1 kzl

Figure E.1: Homogeneous space equivalent transmission line.

V(zt.)

Src

e

V| [y 1 2]

Figure E.2: Homogeneous space equivalent circuit at z = zg..

E.2.2 Examples of calculations

In this section the voltages and currents for some stratified structures are calculated.
These expressions can be substituted in (E.71) to (E.74) to obtain the explicit ex-

pressions of the spectral domain dyadic Green’s functions.

Homogeneous space case

The first example is given by the homogeneous space, as sketched in Fig. E.1: an
electric and a magnetic current densities, placed at z = zy., which radiate in free
space. The right part of Fig. E.1 reports the equivalent circuit of this scenario.

The Thévenin equivalent circuits seen from the source generators at z = 2. are the
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E.2. Green’s functions of stratified structures

two characteristic impedances Z..1, as shown in Fig. E.2.
Let z,s the point in which the Green’s function has to be evaluated; it is possible

to study separately the effects of the two generators by superposition, defining:

V(ZObS) = ‘/j(zobs) + Vm(zobs)-

For what concerns currents:

[(Zobs) = [J (Zobs) + [m(zobs)-

The contributions for this case are:

1 1
_ 1 _ 1
]j (Zsrc) = _57 Vj(zsrc) - §Z<>ol (E76)

Indeed, the electric current density corresponds to a magnetic field discontinuity; for
this reason, the current generator, related to the magnetic field in z,., are different;
on the other hand the voltage generators, related to the electric field, are equal.
Instead, for what concern the magnetic current densities, dual considerations can
be performed:

1 1
+\ _ +) —
Vm(zsrc) - 2’ ]m(zsrc) 22001 (E77)
Vin(Zge) = 1 i (Zge) = . (E.78)
m Zsrc - 27 m Zsrc - 22001' .

The next step is the calculation of the voltage in a generic point zgps:

V}(Zobs) _ V;(Zsirc) e IF=1lzops —zsc| (E79)
Vm(zobs> Vm<zi )

Src
Then, to calculate currents, it is possible to divide voltage by Z(zops); since in this

case the transmission lines are infinitely long,

Z(Zzobs) = Zool'
The circuit calculations are always the same for both polarizations; the difference
between the TE and TM cases lies in the different characteristic impedances.

Homogeneous half-plane with PEC plane

The second case is summarized in Fig. E.3: for z > 0 the space is filled with

dielectric €1, whereas at z = 0 there is a PEC ground plane.
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€1

+
Zsre

i

€1

PEC

Figure E.3: Equivalent transmission line of the homogeneous space with PEC ground

plane at z = 0.

—) —e—
kzl
Zool
—>
—) r—eo—
Z(Zsrc)

Figure E.4: Circuit for the evaluation of the input impedance.
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Figure E.5: Equivalent circuit at z = zg, of the half-homogeneous space + PEC

ground plane.

Zobs < Zesre Case

+

src?

The first step is the calculation of the Thévenin equivalent; for 2z, this is equal to

the previous case; instead, for z:

FB7 — _1’ FA+ — _e_JkallAB — _e_Jkalzsrc’
SO:
T T i
zZ, = —_— = — .
(25rc) I T,y ol 1 e—iZkarzer

It is possible to identify two contributions: the direct one, which equals the ho-
mogeneous space one, and the one reflected by the short circuit; to this aim, it is

convenient to write the input impedance as the sum of two contributions:

_ a—i2kz12src —j2k212src
1—e e
= Zool - 22001

- A
Z(25) = S - T o o Zoor + Zim.  (E.80)

This leads to the definition of the equivalent circuit of Fig. E.5. It is possible to

compute Vp,(z5,.) as:

Zool + Zim
Zool + Zool + Zim'

Now, by manipulating this expression to isolate the homogeneous space contribution

Vm(zs_rc) ==
from the one coming from the reflecting short circuit:

Zoor + Zim 12200+ 22 1 1 Z
1 E o 2t T2 L wm (g

Vinl2re) = 2 227+ Zim

srC) _2Zool + Zim B _2 2Zool + Zim

Now, by considering the contribution that arise from the electric current density:
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I( — ) o Zool o 1 2Zool o 1 2Zool + Zim - Zirn o
! Fare) = 2Zool + Zim B 2 2Zool + Zim B 2 2Zool + Zim B
1 1 Z;
-4 - ~m E.82
5 997 1 2. (E.82)
SO:
1 1 Z;
Vi) =|—=+=—""— | [Zoci + Zin] . E.83
Then:
‘/E(Zobs) ‘/3+(Zobs) V+(Zsrc) _ik _
— 1+F ZOS — J e .]z1|zobs Zsrcl 1+FZOS —
Vm(zobs) Vrg_(Zobs) [ ( b >] Vrj{(%rc) [ ( ’ >]
‘/j(ZSI‘C> 1 + F(ZObS> e_jkzllzobs_zsrcl
Vin(Zsre) 1 + [ (2gc-) 7
where:
F(Zobs) = _eiJ.ZkleObSa
and:
F(Zs_rc) — _e_ijzlzsrc'

Finally, it is possible to calculate the current by dividing the voltage times Z(2zobs);
in this case this is not equal to the characteristic impedance, since the line is loaded

on the reflecting element; therefore:

1 + F(»Zobs)
A obs) — )
(Z b ) 1-— F<ZObS)
and:
]j(zobS) . 1 Vj(ZobS)

Im(zobs) B Z<ZObS) Vm(zobs)‘

Zobs > Zsre Case

Once again, it is necessary to compute the voltage at z = 2 :

src*’

o Zool
B 2Zool + Zim

1 A
2 2Zool + Zim’

Viu(zt,) —

src

- % (E.84)

and:
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)— f—
kzl
Zool
Y -
Y =
kzl
Zocl
)— -_—

>
>
z

1
+
0 ZSYC ZSI‘C

Figure E.6: Circuit before (top) and after (bottom) the application of the image

theorem.

piy e ot b L1 T E.85
J(Zsrc) 22001 + Zim 2 T 2 22001 + Zim’ ( )
which leads to:
1 1 Z;
(T Y=27 — o E.
%(zsrc) ool 92 + 2 22001 -+ Zim ( 86)

Then, since for zyps > 2 there is an infinitely-long transmission line, no reflection

is occurring, and:

‘/j(ZObS> — ‘/j—‘r(ZObS) — ‘/j+(Zsrc)e_jkzl‘zobs_zsrc| — V}(Zsrc) e_jkzl‘zobs_zsrc
Vm (Zobs) V+ (zobs) V+ (Zsrc) Vm (Zsrc)

m m

7
and, in this case, Z(zops) = Zoo1-

Homogeneous half-plane with PEC plane: image theorem

In this section an alternative derivation of the previous results is proposed; this
procedure is based on the application of the image theorem to the transmission
line. It is straightforward to prove that the two circuits represented in Fig. E.6 are
equivalent; indeed, by adding the voltage contributions coming from the image and
from the original sources at z = 0, it is possible to observe that in this point voltage
equals zero.

In Fig. E.7 the two equivalent circuits at z = —z,. and at z = 2z, are reported,

where the image current generator has opposite sign; the contributions coming from
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1
° Y LS

v<zm><[]zoo1@ | Zea[] >v<z:m> 2 = 2o

2t

1
I(_Azsrc) N\ + ‘I(_ src
-/ -

v<zm><[]zm@ ] >v<z:m>

Figure E.7: Equivalent Thévenin circuits at z = zy. and at z = —zg..

the left sources are identified by the superscript “i” (image), whereas the ones coming
from the right sources by “d” (direct). For the left part, only the contributions that
go towards z are useful, because this circuit is equivalent to the previous one only

for z > 0; for the z < 0 part of the circuit:

; 1
VOt y= =
m ( Zsrc) 9
i 1 i 1

Instead, for the right circuit, it is equal to the homogeneous space case, here recalled:

G =5 VO = 5 2
19(z50) = —%, A E %Zool
V) =5 ) = 5
Vi (zg5,) = —%, ID() = 221001.

In both cases, the sources are radiating in free-space, so no reflections are occurring;:

(d) ©)
V}(zobs> _ V; (Z;Ec)efjkzl\zobsfzsm\ + V; ) (_Zs—‘;c)efjkzl(zobs+zsrc).
Vm(zobs) Vrgd) (Zs;c) VIS)(_Z;C)

On each point, Z(2ebs) = Zoot-
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€1

= %o
L N
- Zsre
€1
R -4
€2
-—=- -40

PEC

Figure E.8: Equivalent transmission line for the dielectric slab.

Dielectric slab with ground plane

In this section the formulation of the spectral domain Green’s function of a dielectric
slab backed by a ground plane of Fig. E.8 will be derived. The ground plane is
located at z = 0 and the dielectric discontinuity is in z = h. Since this problem is
useful to model a slot printed on a ground plane, it is interesting to compute the
magnetic field on the ground plane, and the electric and magnetic field in a generic

point of the region filled with dielectric €1, so for z > h.

Case 1: z4,. =0

In this situation it is necessary to solve the circuit in Fig. E.9 with a voltage
generator in z = (0. The input impedance seen from z = 0 is calculated by solving
the circuit in Fig. E.10; the first step is the calculation of the reflection coefficient
at the dielectric discontinuity:
Z 1= Z002 A
e = ——— =T
Zool + Zoo2

This reflection coefficient is now propagated to z = 07, so:

FB+ = Fc— eijZkZZh.
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1
€1 kzl
Zool
e L
kz2
€2 Zoc2
u £
- - - = — - - -—-4d0

PEC

Figure E.9: Equivalent transmission line for the dielectric slab: scenario of zy. = 0.

A B C
| | |
I I I
1 1 1
1 1 1
| | |

—+€ € D—e—
1 1 1
: kzl : sz :
| Zool | Zoo2 |
| |

3
| _ _l_
1

.
>
z

Figure E.10: Circuit to be solved for the evaluation of the input impedance seen

from the ground plane.
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Then:
14T 1+ Me—ﬂkﬁh
Zin = onol = Zool + Zoo2 _
I=Tp+ 1— Me—j2kz2h
ZOOI + Zoo2
" Zoot + Zoos + (Zoo1 — Za) e732k=2h _—
" Tl + Zoos — (Zool — Zngy) e7i2ka2" )
If zobs = Zsre = 0, the calculation is complete; instead, if zops > h:
V (%obs) = V+(Zobs) V+(h+) —jkz1(2obs—h) _ V(h+)e—jkzl(zobs_h) _
=VHh)[1+ I‘C ] e dhe(zons—h) —
- V+(O ) [ ]ekaZl(Zobs*h)e*jkzgh _
= V(O)ﬁefjkzlzobse*j(kzgszl)h’ (E88>

1+TI'g+

where V(0) = 1, since it equals the voltage of the voltage generator that models the

presence of a magnetic current density at z = 0.

Case 2: zy. >0
Input impedance

Observing from z = zg. to the right, there is an unbounded region filled with
dielectric €1; therefore, the impedance seen from right is Z,.;. In order to evaluate
the impedance observed looking from z = zy. to the left, it is necessary to solve
the circuit of Fig. E.11. There are three relevant sections: A, B, C; lap = 2gc — h,

Igc = h. Since this transmission line is loaded on a short circuit,

['c- =-1 = I'g+ = —e_ﬂkﬂlBC.

It is known that, in order to obtain the normalized impedance from the reflection
coefficient,

1+ '+ 1 — e i2ks2lBe
1—Tg+ - 1 4+ e—i2k=2lBc’

(gt =

S0, to solve the impedance discontinuity,

A Too 1 — e~ I2kz2lBC

Co- = 7 (o
B- = B+ = ; :
Zool Zoor 1 + ei2k=2lsC

Then, from here:
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S -1
g = G- =1 _

(g- +1

Zoo 1 — e~ J2kz2lBC

Zoor 1 + ei2ka2loe I Zoo2 [1 — e*j%z?lBC} — Lol [1 + e*j%z?lBC}
— ZOO2 1 _ e—j?kzngc - Z002 [1 _ e—ij’ZQlBC] + Zool [1 + e—jZk:zlec]

Zoor 1 + e i2k=2lsc +1
o Zoo2 - Zool + e_j2k22lBC [_ZOO2 - Zool]
B ZooQ + Zool + eijZkZQlBC [_ZOOZ + Zool] B

M — e~ J2kz2lBC
_ ZooQ + Zool

— %e—j%zzlm}
002 + ool
Let T'y; be:
T A Zoo2 - Zool
21 — > [~
Zoo2 + Zool
so, this becomes:
T, — e—i2kz2lBC
Ty 21 — €

1= [y e—i2kz2lpe

Now, it is possible to propagate this coefficient up to the section A", obtaining:

_ —j2kz1laBp
FA"" = FB—e z y

and then, finally:

1+ FA+
Z(Zsrc) = Zoolm =
—j2k2ol
1+ To1 —e i e J2k:1laB
1 — Dy e~ i2k=2lBe

[y — e~ J2kz2lBC
1 — Ty e i2k=2lse

1— F21e—j2kz2ch + [F21 — e—j%zleC] e—I2kz1laB
ool 1 — FZleijk‘zQZBC — [F21 — e_ijzQZBC} efj2kzllAB
22001 |:F21 — e_.]ZkZZIBC] e_.]zkzllAB

1— FQIQ_j2kZQZBC _ [F21 _ e‘jzkz?ch} e—J2kz1laB )

1-— e—J2kz1laB

= L1+

(E.89)

In the last expression the input impedance has been divided into two parts: the one
seen from zg. looking from left, Z..1, plus another term. It should be observed that,

if e9 = €1, the latter term equals zero; indeed, in this case, the slab is actually a
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homogeneous space. This can be interpreted as a free space contribution, plus the

dielectric discontinuity one. Let us define 7, as:

2Z001 [F21 — e_ijZQlBC:| e_jzkzllAB

Zim = : :
] — TyeiZka2lee — [y — e 1%=21m0 ] e-iZkalan

(E.90)

It can be observed that in the case of no dielectric contrast, i.e., 1 = €1, we have
I'y; = 0, and this expression degenerates to (E.80):

e—j2kz1(ZAB+lBC)

Zi = —22001 1 + e_ijzl(lAB+lBC)7

SO, Zim + Zso1 equals the input impedance of a transmission line with parameters
k.1, Zso1 long Iag + lgc and closed on a short circuit. If h = 0, [ap = 2, While

Igc = 0, and we obtain the same expression of the I'y; = 0 case.

Zsre > Zobs Case

If zge > Zobs, it is possible to use (E.81) and (E.83) to write the expressions of

voltage at z = 2.

1 1 A
Vo) = —= — ——Zim
(ZSI‘C) 2 222001 +Zlm
1 1 Z;
Vizad) = | =5+ 55— | [Zoot + Zin] -
.](Zbrc) 9 + 222001 4 Zim [ 1 + ]

The following quantities are defined:

V(Zobs) = Vm<zobs) + ‘/j(zobs)-

Now, the voltage in z = z,,s between the sections A and B is calculated:

V (Zobs) = VT (Zobs) [1 + T(2obs)] = VT (zare Je a1 7mre =200l [1 L T (206)] =

1+ I'(2obs)

14 T'(2src)

L Do) + T (zne) = Dloare) gy
1+ D(2u0) ¢

_ F(Zobs) - I-‘(Zsrc) _ik _
— v 1 il z1|zsrc Zobs
(ZSI‘C) 1 _|_ F(Zsrc) € ?

—jkz1 ‘Zsrc —Zobs | —

= Vi(zee)

= V()

where:
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T (z0bs) = Tp-e 721G D) = T o702 e,

Several complications arise for the analysis of this structure. Indeed, in this case,
Gy # Gy, owing to the presence of the slab. Moreover, if no slab is present,
it is possible to distinguish the image and direct contributions, to calculate the
direct ones with the well known methods, and the images with efficient calculations
(for instance, by means of asymptotic evaluations). Instead, in this case the direct
contribution can not be propagated in the homogeneous space. In order to prove

this statement, now Vi, (2ons) Will be explicitly calculated:

1 1 Zj 1—‘<Zobs) - F(ZSI“C) —jk -
Vm obs) = - = 1 J zl‘zsrc Zobs| —
(2015) { 2 2271+ Zim} { T + I'(Zere) ¢

1

= ——¢ jkz1 |Zsrc*Zobs| +

2
1 —jk=1|Zsrc —Zobs| ['(2obs) — I'(2erc)
2 1+ T(2gc)
+ Zi 1—‘(Zobs) - F(Zsrc) Zi
2Zool + Zim 1 + F(Zsrc> 2Zool + Zim '

The first term is a homogeneous-space contribution, so it can be calculated using
the routines based on the spatial homogeneous space Green’s function. Instead, the
second contribution comes from the presence of the slab and of the ground plane.
In other words, there are two direct contributions, and two image contributions;
moreover, the second direct contribution can not be calculated directly in the spatial
domain, because of the voltage/current divider, which has no closed-form inverse
Fourier transform (Z;, is a function of the geometry). It is possible to define Z(zops)

as the impedance seen in z = z,; therefore, it can be calculated as:

1 + F(Zobs)
Z obs) — T~/ -
(Zobs) = T (2o1s)

It should be remarked that these complications arise from the presence of the di-
electric slab; indeed, if there is no air gap, it is possible to compute the image
contribution by applying the image theorem to the transmission line, and by con-
sidering only the generator located in —zg.; in this case it is not possible to isolate
the free-space part simply by ignoring the generators located at zg., owing to the
presence the slab; this can be seen studying the impedance seen from this generator,

which has a contribution coming from the dielectric discontinuity.

Zsre < Zobs Case

If e < Zobs, it is possible to use (E.84) and (E.86):
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Figure E.11: Equivalent transmission line of the slab backed by ground plane, after

the application of the image theorem.

1 1 Z;
Valzt )= - ——"42
1 1 Z;
V; ) — Zoo — - Tm .
J(’Zsrc) 1 92 + 9 22001 + Zim

Then, let V(21.) be:

src

and, by recalling that:

V(Zobs) = Vm<zobs) + ‘/j(zobs)7

follows

V(Zobs) — V+<Zobs) — V+(Zsrc)e*jkzl‘zobsfzsrﬂ — V(Zsrc)efjkzﬂzobs*Zsrcl.

Indeed, since the transmission line is semi-infinitely long, only progressive waves are

present. In this situation, Z(zops) = Zoso1-

Dielectric slab with ground plane: application of the image
theorem

The scenario of Fig. E.7 can be studied also by applying the image theorem; this
leads to the circuit in Fig. E.11. It is possible to obtain the Thévenin equivalent

circuits in Fig. E.12. The impedance Zj,, is the same in the two circuits. Now, its

expression will be calculated explicitly.

SO:
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I:] Zso1
V(zge) @ 1 Zeot D >V(Z$c) Z = Zsee

(25 o~ + T2
CAa -
2]
Vs | |7 1 V(s
Zim ]

Figure E.12: Equivalent transmission line of the slab backed by ground plane, after

the application of the image theorem.
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g+ = [oe 2200,

Then, the reflection coefficient after the discontinuity is:

. F12 + FB+
B 1 + F12FB+ ’
where:
Zoo - Zoo
F12 - 2 ! .
Zoo2 + Zool
Then:
PA+ — :[‘B_ef.ij:zl('?«'s,rc*h)7
and, finally:
I+ Ta+ Fa+ 4
Iin=——Lo1 = L1l — 21— = Z Zim-
1—Tae ! T—Tar v

Then, if z,,s > h, it is possible to write the expression of the voltage in this point

as a function of the image generators as:

V (2obs) = VT (20s) = V+(h+)e—sz1(Zobs—h) — V(h)e_jkzl(zobs_h) _
= V‘i’(h*) [1 + FC_] e*.].kzl(Zobs*h) — V+(_h+)efjkzg(Qh)efjkzl(zobs—h) [1 + Fc—] _

1+Tp- _; ;
_ V+(—h7) 1 i FE+ efjkz2(2h)e*sz1(Zobsfh) [1 + FC_] —
_ V_,’_(_Z:;C)e_jkzl(zsrc_h)ﬁe—jkzz(ﬂl)e—jkﬂ(Zobs—h) [1+Te ] =

1—|—FB+

_ (e ) Lo T e s o) s re—h) g iea(2h)
1+ FA+ 1+ FB+

where:
V(=) = Vin(—2ae) + Vi(—2a),
and:
V(=) = g2
V(=22 = — 52— Zoes + Zn.
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E.3 Method of moments - slot problem
The details of the MoM aimed at solving the slot problem are now reported. The

unknown of the integral equation is M®): therefore, it is represented as a sum of

known functions defined on X° ¢ ¥ ) weighted by unknown coefficients:

N(i)
M®) (2, y) = xFM.(z,y);
c=1

where the basis functions are defined in the following subsection. Recalling (5.3):
NS

)
fun
l}(zs) / " G(x, .’Bl, y’y/) . Mgls)(x/,y/) dx'dy’ _ H(inc),
=

n=1

where G(x,2',y,y’) is defined as

G(z,7,y,y) = GO(x,2',y,¢) + GY(z,2',y,9).

Since each of these Green’s functions describe the k-th equivalent sub-problem, their
contributions are non-vanishing for > 0 (G() or for z < 0 (G(®)). The last integral

equation is finally discretized by testing it on the functions {M,,}, leading to:

N
2w //uMm(x’y)'/ <>G(l’ax’,y,y/)'Mff)(x’,y’)dx’dy/z
n=1 E’V‘s Ens

= / / M, (z,y) - H® dz dy.
2

Now, by focusing on the left-hand side term, the Green’s function can be written as

its inverse Fourier transform:

1 =~ : / : /
G(z,2",y,y) = 2 / 2G(kx,ky)e_JkI(“_x)e_Jky(y_y)dkxdky.
R

This is substituted in the left-hand side integral, leading to:
]_ ~ : ’ : /
el M,, . Gk, k —jkz(z—a") *Jky(y*y)dkx dk. .-
472 //E,(;) (‘ray> //L‘ff’)/ﬂ@ ( ) y)e e Y

MY (/) da'dy’.

After some internal re-arrangements, this becomes:
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/ M, (z,y)e HF=Te R dzdy-

2

: / G (ky, k) - / / ()ej’“ﬁ'ejkyy’ MY (2, ) da'dy dk, dk,.
R2 P

But:

M) (ks —ky) = / o M (e e o dady
Zm

MO (ki) = [ [ My etrdady,
Xn

and the integral equation becomes:

N(b)

fun

Z J?g:) / R2 M;bl)(_kxa _ky) ) é<k$’ ky) ) M’S)(kx’ ky) dk, dky -
n=1
_ / M, (2, y) - HO) d dy.

=

E.3.1 Basis functions

The following basis functions are defined:

Mn(SC, y) = §fn(x) g(y)7
where g(y) is an entire domain function, so it is not depending on n; two possible

choices are now presented; let w be the width of the slot; then:

e edge-singular functions:

s S ()
9 (y) = =)
0, otherwise .

SIS

<y<

NS

It is possible to calculate the Fourier transform of this function as:

es w
F{d W)} = (Eky> :
This function is interesting because it models the behavior of the slot at the

edges; however, this is more complicated to be integrated.
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e rect functions:

It can be shown that:

Flo(y)} = %

The second function will be used to represent the y dependence of the unknowns. For
what concerns the x dependence on the unknown, piece-wise linear functions (PWL)
are used; given N, the number of basis functions used to represent the unknown,
the interval along = has to be divided in Ng,, + 2 points, and then the Ng, intern

points are considered; these points ¢, are the centers of the PWL functions. So:

2

falz) = anr

0, otherwise |,

[“%F_ym_cn”, Cn—“%gxécn_i_a%

where agp = ¢35 — ¢;. It can be shown that:

C7L+G'%F . Sin2 aﬂk‘x )
f{fn(x)} = / - fn(x)e]k:zx de — 61123F (GB(F; )2 )e_]cnkz
o ks

< _ 2 qese 11
M (2,9) = % fula) oly) = — |55 — e — el o
and:
ML, (k) = app Sin? (‘I%Fk;) gonks sintg%ky) ‘
> () s

E.4 Method of moments - lens problem

The expression of electric field relative to the j-th problem is written according to
the MPIE formulation:

1
V| gix=r)V-J(')dr'+

EY) — _; / (r—r)J(r)dr +
» jwito /gy( )J (') e

— /D’ [Vg;(r — )] x M(r') dr”.
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Figure E.13: Triangle pair and geometrical parameters associated with interior edge.

Here, D’ is the source domain. Then:

ik llr=1']l,
~dr e =1, (E.91)
kﬁj = W/ HoE0E; = ]{50\/5

gj(r — ')

Here only the direct contribution is accounted for; for what concerns the effect of the
ground plane, the ground plane Green’s function is used instead of the homogeneous
one; its expression is derived in Appendix E.1.6. The unknowns of the problem J
and M are represented as a linear combination of div-conforming functions {f,};

RWG basis functions are used as basis functions [53]:

l
nooo+ +
DAT py, ifreT]
Iy ,
fo(r) = DA p,, ifreTl (£.92)
0 otherwise,

where all the terms used in this definition are reported in Fig. E.13. The same set

of functions is used for both the unknowns. So:

Ntun
J(r) ~ Z:L’S)fc(r)
c=1
o (E.93)

M(r) ~ > z™f(r).

These expressions can be substituted in the previous equation, obtaining:
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Nfun

E(])Z (J) s / ) _/fcld/ v R —’V'fc’d’

) ;mc jwito ég](r r')f.(r') dr Joror; Dggﬂ(r r') (r') dr’ o +
Nfun

—Zx(m / [Vg;(r —1')] x f.(r') dr’,

where D), is the support of the n-th expansion function used to represent the prob-

lem.
In order to complete the formulation of the method of moments for the electric
field equation terms it is necessary to test these contributions on a set of functions

g-(r). Let us consider the following inner product definition:

(A(r), B(r)) = /E A(r) - B(r)dr (E.94)

(no conjugation operation is applied, since testing functions are assumed to be real).

Then, for what concerns the electric field equation, let us consider:

g-(r) = f.(r),

meaning that the Galerkin form of the weighted residuals method is applied. Then,
by exploiting linearity:

Neun

(BY £,(r)) = Z zY) {—jwm / () / 95 = r')f.(r') dr’ dr+

1
+- fr.V/ (r—1"V-f.(r drdr’}+
— /D (e =)V L)
Nfun
—Zf’” / / [Vgi(r — )] x £(r')dr'dr  ¥r = L. Npun.

(E.95)

The second integral (the one relative to the gradient of the scalar potential) is re-
written in a different way, shifting the derivative operator to the test functions; let
us prove this.

/ £.(r) - VO(r) dr /D V- (@), () — D(X)V - £,(x)] dr —
= /D V- (®(r)f,(r)) dr — / O(r)V - f.(r)dr,

T
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where the divergence version of the Leibnitz rule has been applied. Then, it is
possible to apply the Ostrogradsky’s theorem to the first integral:

[ V- @wte) d= [ 8- @) ds

r

It is possible to prove that the boundary term equals zero; indeed, RWG basis
functions have no normal components, exception made for the edge on which it
is defined; however, in that edge, the boundary terms are neutralized due to the
continuity property of the normal component to this edge, so no contributions should

be counted. Therefore:

/DT £(r) - VO(r) dr = _/ BV - £, (r) dr.

D

Now, (E.94) can be re-written compactly, defining the following matrix elements:

(D(j))rc — jwuo/ f.(r) - / gj(r —r)f.(r') dr’ dre+
1

_|_

- V-frr/ (r—1r")V - £.(r) dr'dr E.96
o [ V) [ e -x)v ) (E.96)

/
c

(KW),, = /D. f.(r) - /D, [Vg;(r —1')] x f.(r') dr’ dr. (E.97)

An observation on (K(j))rc: assuming that D, and D. lie on the same plane, this
integral equals zero. To prove this, let us calculate the gradient of the scalar Green’s
function, calculated with respect to the source variable r’; since it is defined in
spherical coordinates, it is easier to perform this calculation in this reference system.
In spherical coordinates, the gradient of a scalar function that depends only on
the r coordinate (just like in this case) f = f(r) equals:
_Of

Vf = ra,m

therefore, by applying the Leibnitz rule and the fact that we differentiate in dr’, we

write:

da: ~ ' e—jkj(r—r’) e—jkj(r—r’) R ‘ 1 >
N S LT N P P

or'! Am(r —r') _47r(r )
(E.08)
If D is on the same plane of D,, then T, defined as:
A r — r: ’
|lr — |
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lies on the plane of D/ and D,. This observation will be briefly useful; now, let us
perform some manipulation on the integral; the first point is that f,,(r) is brought
inside the inner integral, since the inner integral is in r’ and so f,,(r) is constant

with respect to it; so:

), :/Tfr(r) . // Vgs(r — )] x £.() dr’ dr —
/T / [Vgj(r = 1)) x £.(r') dr’ dr.

Then, it is possible to use the property of the triple product as follows:

/ f,.(r) - N [Vg;(r —1')] x £.(r') dr’ dr =
/ /D/ [Vg;(r —r')] - f.(r') x f.(r)dr’ dr = 0,

indeed, Vg; is parallel to f{, which is a vector belonging to the same plane of f,,(r)
and f,(r); since all these functions are in the same plane, and since f,(r) x f.(r’) is
a vector orthogonal to the plane where the two functions lie, then the projection of
Vg, of it equals zero. Finally, using the definitions (E.96) - (E.98), it is possible to
rewrite (E.95) as

Nfun Nfun
<EEJ), fr(r)> =3 " 29DY),, - 3 2K, (E.99)
c=1 c=1

where the number of test functions have been chosen in order to obtain a square
matrix. Similar considerations will be applied to the magnetic field contributions.
According to the MPIE formulation,

HY = —jorue, [ g = ¥IME) A+ 9 [ g6V M)
’ ,]W,UO D’

+/I [Vg;(r —r')] x J(x') dr'.

By applying the expansions (E.93) to the previous equation, it becomes:

Ntun

; 1
HY ~ xgm){—jwa E'/ gi(r =) ()dr' + —V | gi(r —1)V - £(r dr’}+
t ; 0=y - ]( ) ( ) jwiio D1 J( ) ( )

Ntun

—l—Zx / [Vg,(r —1')] x f.(r") dr’.
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This equation should now be tested on a set of functions {g, }; also in this case RWG

functions have been used for the calculation of the moments:

g-(r) =£.(r).

By applying the testing procedure, the following equation can be found:

Ntun

< HY £ (r) > Zx {—jwaoaj/ f.(r) - / g;(r — r")f.(r") dr' dr+
1
+ / f. -V gj(r—r’)V-fC(r')drdr'}—l—
Jwio Jp, D,

Nfun

+ me/ : // [Vg,(r —r')] x f.(r') dr’ dr. (E.100)

It is possible to recognize that these terms are very similar to the previous one,

exception made for the multiplying constants; however, it is possible to see that:

jwpo = jweos;i——
€0

So, by defining Z; as the homogeneous space impedance of the medium characterized
by (/1107505]') as:

7 - | Ho
E0Ej
it is possible to write the matrix equation relative to the MFIE contribution of this

formulation in function of the previously computed terms:

Nfun Nfun
<HEJ)7 T > Z2 Z T )rc + Z xg)(K(J))TC <E101)
J c=1 c=1
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