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Introduction

These text is the transcription of the notes, taken by the author, from the
“Telecommunication Electronics” lectures, held by Professor Dante Del Corso
in “Politecnico di Torino”, academic year 2009/2010.

All the images of this text were taken from the learning material of the
course, prepared by the Professor, under his agreement.

Alberto Tibaldi
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Chapter 1

Architectures of radio systems

The goal of this lecture is expose an overview of a radio system, studying
the general architecture in order to identify the function that a radio system
must have to work correctly.

The architectures that we will discuss in this text are heterodyne: with
this word we identify a basic architecture based on a technique that can be
used with analog or digital technologies; usually, in an electronic system,
there are both analog and digital blocks, but digital parts are the most im-
portant: easy to design and realize.

We will use, for this chapter (and generally in all the text) a top-down ap-
proach; it means studying the functions that the system blocks must realize,
then how to realize it with electronic circuits. Which is the top in a radio
system? The answer is easy: what is required for the user! With a radio
system we must listen to music, speak, or something else. The first thing
to do now is define the application and then identify an interesting block to
study.

4



1.1 Receiver

A receiver is a radio system block that can select a channel (a range of
frequencies) from the source (the air) and reduce the spectral components of
all the other channels, so translate the chosen channel in something usable
by human (like sounds!).

A simple architecture for a receiver can be the following one:

The main blocks are: antenna, narrow-band band-pass filter (that selects
the good channel), and demodulator, in order to translate (demodulate) the
signal (from AM, FM...).

This architecture works: shifting the response of the band-pass filter we
can choose different channels, different signals; using as band-pass filter a
resonant circuit.

Changing the reactive parameters of this circuit we can choose one or
another signal. Problem: a resonant circuit like this is difficult to use: it can
not remove all the other channels, because designing a filter with shifting
frequency and narrow band is very very hard. The problem is so the im-
possibility to obtain a good channel isolation, so to choose only a signal and
have possibility of change the channel.

1.1.1 Heterodyne architecture

The basic idea that can resolve our isolation problem is the use of an archi-
tecture like this:

This architecture has the antenna, followed by a wideband filter (useful to
reject noise); there is a new block, then an amplifier-filter and demodulator.
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The new block introduce a new way to work: there is a local oscillator that
multiplies the signal filtered by the first wideband filter.

Before the explanations, some remarks: every signal can be identified in
the following way: a xt(t) signal is equal to a x(t) signal multiplied by a
sine/cosine, that take account of its translation on the spectral domain:

xt(t) = x(t) · cos(2πft)

Where f is the middle of the spectrum of the signal. Let’s now remark
the well-known Werner’s formulae:

sin f1 cos f2 =
1

2
[sin(f1 + f2) + sin(f1 − f2)]

cos f1 cos f2 =
1

2
[cos(f1 + f2) + cos(f1 − f2)]

sin f1 sin f2 =
1

2
[cos(f1 − f2)− cos(f1 + f2)]

This formulas are very useful in order to understand what happens when
two sine waves are multiplied: the output of the multiplier is composed of
two terms: one with frequency (f1 + f2), the other with frequency (f1 − f2).
All this terms are multiplied for x(t), the signal in base-band (centred on 0
Hz).

If there is a x(t) signal, by multiplication we can translate its spectrum:
ignoring (in all of this text) the (f1 + f2) term, the final frequency of the
signal it’s (f1 − f2); tuning the local oscillator to a frequency in order to be,
respect to the frf term (the frequency of the signal out of the antenna filter),
in a fIF frequency for what:

fLO − frf = fIF
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The multiplication will generate a signal translated in fIF . fIF is the
Intermediate Frequency: that is a fixed frequency set by the designer, where
the multiplication block must shift the former signal, naturally only after
have well set the fLO, the frequency of the Local Oscillator. The variable
parameter is not the final frequency or the frequency of the channel, but
only the frequency of the local oscillator, before the multiplication realized
by the mixer. The multiplication do the separation, so, in fIF we can design
a band-pass filter easily and with better parameters: design a filter in a fixed
frequency is better than in variable frequencies, because by this way we can
obtain good parameters (like the quality factor, Q, quantifying the selectivity
of the filter: with high Q, band is narrower).

Problem: this technology is based on a system that can shift signal spec-
trum if it is far from the oscillator frequency exactly fRF − fLO. There is
another critical frequency: a frequency for whom fIF = fLO − fRF,2: in this
case, if there is some spectral content on this frequency (the symmetric fre-
quency respect of the fLO, the frequencies shifted are two: the good one
(fRF ) and the bad one (fRF,2): the second one is usually called image: if
the local oscillator is exactly between two signals with the same frequency
difference respect to the fLO, the mixer will take two signals instead of one.

How can we handle this? There are many ideas in order to do this:

• The first idea can be the following one: use a radiofrequency filter
(the one which follows the antenna output) with narrow band we can
erase part of the image frequency; there are two sub-possibilities at this
point:

– If we use a big fIF , so consider large frequency differences, we
can use the effects of the radiofrequency filter and have reduced
spectral components for the signal far away from the good one
(including in this components the image frequency one!);

– The previous sub-point is interesting but also has a problem: high
values of fIF cause problems in designing of the IF filter: design
a narrow-band filter (with good parameters) in high frequencies
is very difficult, so we remove images, but we can’t obtain an
excellent selection of the channel.
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This problem appears also in the first part of this idea: this idea is
based on introducing a narrow band (not very narrow) in radiofre-
quency spectrum, and this is very very difficult (and so expensive) to
have. This idea is realizable, but not very good. The parameter that
quantifies the qualities of a filter is the factor quality parameter, Q: it
is very difficult to have high Q (and so narrow band) in high frequen-
cies. A last note: for the radiofrequency, with this idea, the equivalent
system is like having a moving filter (IF filter); from the point of view
of the filter, it’s like to have a shifting spectrum; what really happens is
different from both the points of view: the local oscillator with its fre-
quency it’s multiplied for the signal, and due to the Werner’s formulae
we know that there is a shift of the signal.

• Filtering and design filter is hard, expensive, so often it’s not the good
way to take: from one side we want high IF frequency, from the other
side a low IF (in order to increase Q). Can we get something that makes
everybody happy? The answer is yes: do the frequency translation
twice: dual converse.

The first IF is in a high frequency, the second one in a lower frequency
respect of the first one, in order to have a narrow band filter easy to
design and removing (with the first IF) image effects. There is, after
the first translation, another possibility for images; the filter in the
middle of the two mixers is useful for this reason: remove components
or images before the second translation.
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There are systems with three of four conversions; the problems are for
the filters, cause give a good shape to the filter can be hard, so expensive.

In order to realize filters, there are different ways:

• LC circuits, so electronic resonators (already seen);

• Mechanical filters: electronic circuits with mechanical elements that
can have filtering effects, like LC resonators.

Mechanical filters

Some years ago in high quality audio system the best way in order to realize
filtering effects was the use of SAW, so of mechanical filters; SAW (surface
acoustic wave) filters are electromechanical devices commonly used in ra-
diofrequency applications. Electrical signals are converted to a mechanical
wave in a device constructed of a piezoelectric crystal or ceramic; this wave is
delayed as it propagates across the device, before being converted back to an
electrical signal by further electrodes. The delayed outputs are recombined
to produce a direct analog implementation of a finite impulse response filter.
This hybrid filtering technique is also found in an analog sampled filter. SAW
filters are limited to frequencies up to 3 GHz.

With quartz filters there are small metallic boxes that contain quartz
oscillators: they are the base block for almost every good oscillator/tuned
circuit. This can be used in order to realize also narrowband filters.

SAWs use ceramic materials, and are less expensive of the quartz lattice
filters, but can produce something similar. The RF filters for the cellular
phone use this technology.

1.1.2 Complex filters: SSB

There is another way to relax the specifications of filters, using the theory
hidden in the Werner’s formulae; as we already remarked before:

sin f1 cos f2 =
1

2
[sin(f1 + f2) + sin(f1 − f2)]

cos f1 cos f2 =
1

2
[cos(f1 + f2) + cos(f1 − f2)]

sin f1 sin f2 =
1

2
[cos(f1 − f2)− cos(f1 + f2)]

Now: we know that sine is a cosine shifted by π
2
; what we can do now

is use this relations and delete with the maths the bad signal: the image
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frequency! If we have on one side the multiplication of two cosines, on the
other side the multiplication of two sines, adding the results we obtain:

cos f1 cos f2 + sin f1 sin f2 = cos(f1 − f2)

An architecture that can realize this idea is the same:

With the phase shift device we can change the cosine wave in a sine
wave with the same polarity, so remove with the adder the image frequency
without using filters. In order to have many channels in the spectrum, we
can use SSB modulation (Single Side-Band): with a phase shifter and this
technique we can obtain the SSB.

This architecture solves every problem? The answer is yes, but we have
yet some problems: this architecture is used in commercial devices only since
four-five years, because it requires very tight matching of gain and phase
rotation of the signal; if this condition is not satisfied, positive and negative
components don’t delete by themselves and the system does not work. This
can be done now with integrated circuits: although this technique exists since
the World War II, it was for many years very expensive to realize, so useless.

Let’s analyse better this architecture: there are two groups of phase
shifters: the left ones and the right ones. The left ones are critical: they
must change in a wide band but with a great precision; with their, our local
oscillator can generate both sine and cosine waves, over a wide range of fre-
quencies; the other left-side phase shifter is connected to the output of the
antenna, so it must work in a wide frequency range. The right one is on the
difference, on the IF: at IF, so in a fixed frequency, the previous problem does
not exists, so we must build a phase shifter that works on a single frequency,
in a very narrow band (the filtered one), and this is easy.

Another block present in the architecture is the LNA (Low Noise Ampli-
fier): out of the antenna there is a microvolt (or less) voltage, so noise has a
little amplitude; due to this reason, we write about low noise.

I/Q demodulation

We have, after the previous subsection, sine and cosine (thanks to the phase
shifter); an idea to realize a radio system architecture is use a phase/quadrature
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modulation, so decouple the signal in two components, multiplying it to sine
and cosine:

Zero-IF receiver

The idea of heterodyne architecture was shifting the signal spectrum to a
frequency range lower than the former one; the idea of zero-IF receivers is
moving the spectrum in base-band, using as center of the bandwidth the DC
frequency: 0 Hz. The main difference is that we don’t need a band-pass filter
after this shifting, because it’s enough the use of a simple low-pass frequency
response; the low-pass filter can be realized easily respect to the band-pass
one, and we can use op-amps.

There is also a problem: in zero-IF transmitter, DC becomes the signal,
so there are problems with op-amps and other electronics because of the
hardware offsets. There is another problem: if there is a noise at the same
frequency of the signal, isolation for the local oscillator is impossible.

Another problem: the image frequency can exists, if there is a signal in
the other side of the spectrum respect of the 0 Hz: shifting from fRF to 0
Hz the signal, we will shift also the −fRF one, obtaining an overlap of the
spectrum. For this reason, zero-IF cannot be realized with only one mixer;
however, this is a good technique, because of the filter required: low-pass are
very easy and cheap!

The presence of low-pass filters is a characteristic for this architecture: if
in a schematic we see a low-pass filter, we can be sure that this is a zero-IF
architecture, because it is the only one that can use this kind of filters.

1.2 Digital receivers

Until now we have studied the heterodyne structure for receivers and trans-
mitters; we have learned what are the image frequencies and how to remove
they by filters or some other ways; all the system studied have a common
characteristic: they are all analog, so based on analog electronics. In this
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years electronics focused their studies and researches on digital realizations:
they are cheaper, useful for new media like satellites, and more insensitive
respect to noise: due to the fact that there are only two possible levels, noise
cannot disturb in a great measure the information and elaboration of the
circuits; another reason: with digital electronics is possible to handle hard
modulations or other function in an easy way, just by programming a DSP,
a processor.

This section will explain how to realize a digital receiver in many ways,
describing the differences between the various architectures. The block that
realizes the transformation from the analog world to the digital world is the
A/D converter (Analog to Digital converter): from the place in the block
diagram where the A/D is inserted to the end of the block diagram, all the
blocks will become digital.

There are many ways to use an A/D converter; let’s study all of them:

• First way: put the A/D converter out of the demodulator:

The demodulated signal will be transformed from analog to digital; on
digital we can do easily error correction, encryption or other functions
that can be implemented on analog signals, but really hardly.

• Second way: A/D converter between output amplifier and demodula-
tor:
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With this architecture we can demodulate the signal with digital sys-
tems, so programming the processor! If IF is centred in a low frequency,
the sampler can be simple to realize technologically; this is the first step
in order to realize a software radio.

• Third way: put the A/D converter after the mixer:

Well, the IF frequency is the same, but now the DSP must realize
also digital filtering functions; design a digital filter is more easy that
an analog filter: we must only program a processor instead of change
values for capacitors or inductors. There is a drawback: we need a
processor which requires more power respect to the previous situation:
for filtering function we require more computation power, so much more
energy to provide to the system.

In order to have a good converter it must represent all the values out
of the antenna; in order to do this, there are two ways to design the
system: design an A/D converter with many bits, in order to represent
correctly also the small values, or use a VGA (Variable Gain Amplifier):
if the amplifier amplifies only the small parts of the signal out of the
antenna filter, we can describe the smaller signals as the bigger one,
with the same precision and without using any more bit.

Remarks about sampling

Let’s remark now what happens when we sample a signal: every time we
sample a signal, in the time domain we multiply the signal with a train of
pulses; as known from the Signal Processing course, a train of pulses in the
time domain has, as spectrum, a train of pulses. We have something like
this:
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This picture can show the meaning of the Nyquist criteria: sampling
generate replicas of the spectrum of the original signal, centred in the double
of the base frequency, the triple, and so go on (back and forward); if we
sample with a frequency smaller than 2fB, where fB is the bandwidth of
the signal we consider, we have aliasing, overlapping of the replicas of the
spectrum. For this reason, before of the sampling process, we must use an
anti-aliasing filter, realized by a low-pass filter, that erases all the spectral
contributes after fB, reducing aliasing effects.

1.2.1 Digital architectures

Basing on this ideas, there are some architectures:

• Second conversion (with phase and quadrature): using two conversions,
the digital signal we have can be treated as an image; the digital pro-
cessor can be used in order to edit or elaborate digital images, using as
components the phase and quadrature ones.

• Decimation: we can reduce sample rate in order to use less power:
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If there is a spectral range not interesting for the elaboration, with
a filtering process we can reduce the sample rate and obtain a better
signal to handle.

Samplers as mixers

The most interesting application merit a dedicated subsection. An introduc-
tion: as known, the frequency shifting is realized by multiplying a cosine
wave (or sine wave) to a signal, in order to obtain a signal centred in the
difference of the two frequencies; we also remarked that a train of pulses in
the time domain has as spectrum a train of pulses in the frequency domain;
every pulse (Dirac delta signal) is a sine wave, as known from the theory of
Signal Processing; we can say that a mixer can be replaced by a sampler,
considering a good frequency: depending on the frequency of the spectrum
of the delta train, we have different contributes; let’s consider this example:

If the only spectral range interesting for the radio elaboration is the one
near to 3FS, where FS is defined as:

FS ,
1

TS

And TS is the sample time.
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The sampling process is so used also as frequency conversion process:
changing the sample rate we can change FS, so change channel and part of
translated spectrum.

Obviously, we have a problem: this A/D conversion is not simple to
design, because it works in radiofrequency; the only device before it is the
anti-alias filter, that removes RF noise (LNA).

Sampling (or oversampling) with respect of Nyquist criteria, we can re-
build the signal. Previously we looked a particular case: the one with the
useful signal in the middle of the bandwidth. As we seen, by multiplying for
the 3rd delta signal we obtain S − 3FS, so we same thing. A note: we don’t
sample at Nyquist frequency, because we don’t consider the other spectral
contents (before and after the useful signal). This case can be very useful
if all the channels are in the center of the total bandwidth. By violating
Nyquist, we obtain a confused signal, that cannot be treated with any kind
of technology:

Here we have the filtering effect: by filtering, so isolating the set of the
channels (the useful range of the frequencies) we subsample: we violate the
Nyquist criteria, but we don’t have problems, because of the elimination of
all other elements; the final result is similar to the IF translation; after the
translation, we can use a lowpass filter in order to rebuild the signal.

The important thing is the signal bandwidth, so the wideness of the chan-
nel bandwidth, not the carrier frequency: sampling can move the spectrum
back as the mixer + oscillator, by subsampling. Let’s understand one thing:
the Nyquist criteria must be respected, but only in order to avoid aliasing
problems in the final result: we subsample respect to the carrier frequency,
not respect to the wideness of the set of channels: if the set of channels has a
bandwidth large 300 MHz, we must sample at least at 600 MHz, the double
of the wideness of the bandwidth. The individual channel so can be isolated
with digital sampling, with techniques based on processor programming, us-
ing analog electronics only for the radiofrequency filter (the one that deletes
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all the non-interesting parts of the spectrum).
The main idea for a radio system must be this: go to digital as soon as

possible: to digital, all become easier. The best idea is undersampling (sub-
sampling); with two images, as already wrote, we can do image cancellation
with no filtering.

In modern devices or products, the radiofrequency filter it’s large enough
to keep all the channels; professional receivers have more filters, so depending
on the situation they choose one or another; tri-band cellular phones are an
example of this thing: three band that they can use, so three radiofrequency
filters!

We wrote so much about receivers, but nothing about transmitters; this
is not necessary, because the architectures of the transmitters are equal to
the ones for the receivers, less then amplifiers: in receivers we use LNA, Low
Noise Amplifiers; in transmitters PA, Power Amplifiers, that have, often,
non-linearity problems.
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Chapter 2

Linear and non-linear use of
bipolar junction transistors

In radio systems an engineer must use very often amplifiers: amplifiers are
necessary every time we need to change the amplitude of a signal, increase
its power or something similar. There are some ways to design amplifiers:
with operational amplifiers, with transistors or with other devices. Oper-
ational amplifiers are very easy to use for designing, but they have a big
problem: the bandwidth that they can provide is small; over some mega-
hertz an op-amp can not work. Because of this, transistor amplifiers are the
best way to design and realize an amplifier for radio systems: transistors can
work with signals up to 10 gigahertz frequency, if the designer is skilled (but
this boundary is shifting!). Transistor amplifiers are really useful in radiofre-
quency: near antennas or other radiofrequency/microwave devices, op-amp
are totally useless, and the best solution is use transistors.

In this chapter we will study first linear models (small signal models)
of the bipolar junction transistor, focusing in analysis and then in design
(studying ways to choose amplifier gain, output voltage swing, amplifier
bandwidth), so we will use non-linear models, in order to study other ap-
plications of the bipolar transistor, based on the Ebers-Moll model (and its
exponential relation between voltage and current).

The general symbol of an amplifier is this:

In theory if we put in an amplifier a signal vi we must have an output vo
like this:

vo = A · vi
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vi and vo must have the same shape, only re-scaled by a factor A. There
are some non-idealities:

• In every electronic system there is noise: every block adds additive
noise, n(t):

v0 = vi · A+ n(t)

• The shape of the signal can change:

the amplifier can have saturation effects or something similar: slew rate,
phase distorsion or something else. In order to consider this effect, can
be useful consider the Fourier series of the distorsion1 of the signal:

v0 = vi · A+ n(t) + (v2
e , v

3
e ...v

n
e )

ve is the error signal in the system.

For amplifiers we need to have only the re-scaled term: we want to keep
only this function:

vo = A · vi
To obtain this, we will study ways to have better linearity; another part

of this chapter will study applications of non-linearity, but later.
Now, we will have some remarks for some “famous” circuits, and learn to

design on they.
There are many types of transistors: BJT (bipolar junction transistors),

MOS, FETs or other; on the small signal model, BJT or MOS are equal;
while we move on large signal, there are some differences: for BJT there is
the Ebers-Moll model, the well-known exponential relation, easy to analyze
and use. For MOS transistors this is not true: there are many equations that
describe the behaviour of the MOS in different work regions, or “operating
points”; there are different models for every device and for every operating
point we want to use. In this text we will study the maths for only BJT,
because it’s easier: BJT can be handled with maths, MOS only with simula-
tors. There are tricks for control non-linearity and distorsion; we will study
this tricks on BJT, but don’t worry: they can be applied without problems
also in MOS transistors!

1A little note: there are some functions, some devices, that need distorsion; mixers are
an exemple of this functions.
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2.1 Topology and biasing selection

There are three topologies to realize single stage amplifiers; for single stage
amplifiers we mean amplifiers realized with a single transistor; every stage
takes its name from the name of the pin connected to ground (to the “com-
mon” pin). This three topologies are common emitter, common collector (or
emitter follower), common base.

• The common emitter topology is the most important topology of the
three: with CE we can amplify both voltage and current (especially
voltage).

• The common collector topology is useful in order to realize a voltage
buffer: the voltage gain is almost one, but the current gain is higher;
this circuit has large input impedance and small output impedance, so
it can be used to improve the CE topology, realizing a better voltage
amplifier.

• The common base topology can be used in order to amplify very high
frequency signals or to realize particular stages.
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2.1.1 Biasing of the common emitter topology

The best topology to realize single stage voltage amplifier is the first one:
common emitter topology. For every amplifier, the designer must choose
some parameters; the first parameter is the operating point, or bias point.
The question is: how can we set the operating point of the amplifier? The
answer is quite easy; look at this picture:

The curves represent the different working point that the device (BJT)
can use; there is a line, representing the values of voltage and current that
can be assumed by a linear net (a circuit composed by resistors, capacitors
and inductors: linear devices). Choosing the net we can choose the bias point
of the amplifier in order to satisfy specs.

The first step is choose a supply voltage for the circuit; it can be named
Val or VCC (the second one is interesting: the capital V means “DC voltage”,
and the CC means supply voltage on collector side). Connecting resistors (in
order to have a small current) between the device and the voltage source, we
can have a first circuit like this:

This is not a good schematic: the collector current is not fixed, because
it depends on the β parameter (current gain); we have something like this:
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IB =
VCC − VBE

RB

But

IC = βIB

Can we decide the operating point now? No! We don’t know the exact
value of the current gain β, cause we have a bad tolerance on this parameter.

Second step is introducing a resistor on the emitter, RE: RE works like
a negative feedback, because if the current on it increases, increases the
voltage on it; on the other side, if the voltage in the emitter increases, the
other voltage values decreases (the VBE voltage, that controls the operating
point of the device), so the current gets stable.

We want a good collector current; with this schematic there is still de-
pendance by β; an idea can be the use of the famous self-biasing circuit :

Choosing the good parameters for this circuit, it can be proof that the
voltage gain is like:
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Av '
RC

RE

If we use this schematic we have one more problem: if we want to choose
the gain of this stage, we must change the bias poin; that’s no good at all.
How can we change this? Well, we don’t matter if the operating point and
the model of the circuit for small signals are different: we only need to realyze
amplifiers! What we can do is use circuital (possibly linear) elements that can
decouple some resistors from the other component of the circuit, in order to
have a behaviour for the DC different to the behaviour for the small signals.
The solution can be this:

Does this capacitor modifies the operating point? No! OP depends only
on DC, but, after a transient, so in the steady state, the capacitor becomes
full of charge, and it can be modelized by an open circuit. If the capacitor is
big enough, it introduces a pole in the frequencies near the zero hertz limit,
so it won’t change the behaviour of the circuit in the good frequency range
(where it must work as amplifier): it will be modelized with a short circuit,
for frequencies higher than the pole’s one.

Here is the equivalent circuit of the amplifier (in linearity):

Remember that now we are only interested about changes of voltage and
current (signals): since we are analyzing changes, the DCs are not important.
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On the emitter there is, as resistance, R1//R2; on the collector there is
only RC . The voltage gain can be calculated as:

Av =
vo
vi

Where

vo = −gm · vBE ·RC

Because, as we can see in the equivalent model of the amplifier, VBE = vi.
So:

Av = −gm ·RC

This is the gain in this circuit, and this is not so good: gain depends on
gm, that depends on the operating point chosen for the circuit.

In order to end this section, a little remark: in DC, the capacitor is
full of charge, so it’s impedance is higher than all other impedances in the
circuit, and it’s modelizable as an open circuit; if the frequency of the signal
is high, capacitors have an impedance smaller than the others in the circuit,
so are modelizable as short circuits. This can be useful for selecting the gain
without touching the bias point: due to linearity, we can decouple DCs and
signals and their effects on the circuit, so, using capacitors, we can “show” to
different signals different circuits, obtaining a frequency-dependent voltage
gain.

2.2 Analysis of the circuit

At first, we want to analyze the circuit, in order to get formulas useful to
design with it. We are interested only on the resistive part of the impedances
ZE and ZC , so we will consider only RE and RC . hie and hfe are some of
the small signal parameters we are interested to study; in order to not use
the circuit in a non-linear zone, we want VCE > 0, 2 volt: if we have a
smaller collector to emitter voltage, the transistor works as a switch, not as
an amplifier, and distorsion effects change the shape of the signal.

2.2.1 Analysis of the bias point

Beginning with the already shown circuit, we can use the Thvenin equivalent
circuit, obtaining:
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Where:

VBB = VCC ·
R2

R1 +R2

RB = R1//R2

Now, let’s write an equation for the mesh of the circuit that don’t go
through the collector, obtaining:

VBB = R1//R2 ·
IE

β + 1
+ VBE +REIE

If the circuit is well designed, the first term (depending by β) will be near
to 0; as known, a typical value for VBE is 0,6 volt. IE can be evaluated with
this:

VBB ' 0, 6V +REIE

With this and the other mesh we can evaluated the VCE voltage:

VCE = VCC −RCIC −REIE

If VCE > 0, 2 volt, we know that the circuit works in a good zone, so that
we are far from the saturation area.

2.2.2 Bandwidth

In this text there was nothing written about amplifier bandwidth. A good
designer must limit bandwidth for a reason: many bandwidth, many noise:
the stochastic process more often used in order to modelize noise in elec-
tronic systems is the white gaussian noise, that exists in every zone of the
spectrum; limiting bandwidth we can limit the incoming noise, increasing
the performances of our system.
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How can we control bandwidth? Somewhere this question was already
answered: with capacitors! Capacitors (like inductors, elements no more
used because very difficult to integrate) can show, as previously written,
show to the signal different circuits depending on the its frequency, hiding or
showing other elements like resistors or something else. Where must we put
capacitors? Well, there are substantially two ways to use capacitors:

• Putting they on series to other elements: putting a capacitor in series
introduces a transmission zero for this component, so a high-pass re-
sponse; this can determine the low frequency response of the circuit or
of a part of it;

• Putting capacitors on parallel (connected to ground) have a dual effect:
the capacitor for low frequency is hidden by his big impedance, but for
high frequencies he becomes a short circuit, so connect a pin to ground,
and stop the signals on its way. This is a low-pass response: this way to
use capacitors permit to determine and set the high frequency response
of the circuit.

Sometimes we can see capacitances between base and collector of the
transistor; they are not capacitors, but parassite capacitances; for now, we
don’t consider this on circuit.

2.3 A design example

Design an amplifier with the following specifics and schematic:

• Voltage gain Av = 15 (nominal);

• - 3 dB bandwidth from 200 Hz to 20 kHz (minimum);

• output dynamic at least 4 Vpp on 10 kiloohm load (or higher);

• supply voltage 15 V (nominal);

• 2n2222A Transistor.

2.3.1 Resolution

Bias point

The operating point of the amplifier must be chosen in order to choose the
output swing. There are many ways to start design, here is proposed one of
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these. We want at least 4 volt peak-to-peak of output voltage swing with a
load of 10 kiloohm. This indication is useless: bias point must be decided
without introducing load in the circuit (in the beginning).

For the signal, the equivalent circuit is this:

When we connect the load to the circuit, we have a voltage divider. The
idea can be the next (it’s NOT the only way to follow!): Vu must be obviously
higher than 4 volt, so let’s suppose 8 volt, in order to have RL = RC : the
divider becomes equal, and on the load we obtain half of 8 volt, so the 4 volt
of the specs.

Now: with 8 volt of swing on the collector, remembering that the highest
voltage on the collector can be 15 volt (the supply voltage); the minimum
voltage on the collector is the difference of 15 and 8: 7 volt! Due to avoid
saturation, we must impose a voltage between collector and emitter of almost
0,2 volt; we choose 1 volt in order to keep us far away from the saturation
zone. Imposing 6 volt on the emitter we can guarantee that the threshold
will be respected. What is the value of the current IC ?

IC =
15− 11

10 · 103
= 0, 4mA

Voltage divider

What do we need now? Well, we now can calculate the ratio of the voltage
divider on the base: we have the voltage on the emitter and the VBE voltage
drop, so:

VB = 6 + 0, 6 = 6, 6V

This is one constraint of the problem; the other constraint is that we
need the base current: we have to take account of the value of IB in order
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to calculated good values for the base resistances. Don’t forget one detail:
we don’t know β, the current gain! Let’s use a βmin, which can be found on
datasheets; with βmin = 50:

IB,MAX = 8µA

In order to make the voltage here not related with this current, if we make
the current on the R2 resistor much higher than 8 microampre, we are ok;
let’s not have a huge current: this can dissipate power on the resistors due
to Joule effect. Choosing a current 10 or 50 times greater than the other, we
are ok.

Voltage gain

For the voltage gain, found the bias point, we must study gain and its fre-
quency response. What must we do now? Well, the frequency response of
this system is something like this:

In the frequency range where the circuit works as amplifier, we must
impose a voltage gain. This can be done easily:

• From the collector, we see a resistance of RC//RL;

• From the emitter, we see a resistance of Re1.

So:

|Av| ∼
RC//RL

Re1

Because C4 is closed, C3 is open.
There is a more precise formula:

Av =
vo
vi

= − ZChfe
hie + ZE(hfe + 1)
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For the frequency limits, C3 and C4 must be calculated in order to put
poles in the position requested by the specifics of the circuit.

2.4 Non-linear issues on transistor amplifiers

Until now we have analysed a basic transistor circuit to realize amplifiers, in
a condition: the linearity. Having signals that can not go out of the output
voltage dynamic; in linearity we use the small signal model:

Out of the linearity voltage amplitude range, the analysis cannot be done
with the linear model, but there is another good model to use: the Ebers-Moll
model, taking account of non-linear effects:

If we put a sine wave in a system with this model, due to non-linearity out
of the system we will not have a sine wave, because non-linearity generates
other harmonics contributes:

Problems of non-linearity in radio systems are in power amplifiers, be-
cause signals treated with them is not small; in telecommuncation electron-
ics, non-linearity effects can be good: some functions useful in this context
(like mixers) can be realized with there effects.

The basic circuit that we will consider is the next one:

Biasing is fixed by fixing the current source on the emitter; supposing that
we are interested on signals, variations, we will consider C1 and C4 closed,
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C3 open; we need something that put to ground the current for the signal
but not for the bias, and this is the capacitor; choosing the convention for
the voltage sign positive in the lower pin of the capacitor, supposing that
the current generator is connected to a voltage reference (not necessary zero,
because often we use negative voltages in the emitter). We introduce a sine
wave on base (signal with no offset, because it has an average equal to zero),
we know that on the emitter there are -0,6 volt (due to the vBE voltage and
because on base there are zero volt of DC). Supposing so that:

vi = Vi cos(ωit)

IC ' IE

Then, using the Ebers-Moll equation:

IE = ISe
vBE
ηVT

Where IS is the reverse saturation current, and η = 1 in transistors (due
to technological reasons). Using down current convention, we can write:

vi = vBE − VE =⇒ vBE = vi + VE

VE is a DC voltage, so it’s written with the capital. We can substitute
and find:

IC = IE = ISe
vi+VE
VT = IS · e

VE
VT · e

Vi
VT

cos(ωit)

Defining the normalized voltage value x as:

x ,
Vi
VT

We can try to obtain a better equation to study. The critical term is the
exponential of cosine; can be proof that:

ex cos(ωt) = I0(x) + 2
∞∑
n=1

In(x) cos(nωit)

This means that voltage can be decomposed in different contributes de-
pending by harmonics, where every harmonic contribute has a frequency
equal to the ωi frequency multiplied by an integer factor n. The coefficients
of this series expansion depend on the modified Bessel function of first specie.
In order to compute this values, we will use tables. Putting this expression
into the old equation, we obtain:
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iC , IC = ISe
VE
VT

[
I0(

VE
VT

) + 2
∞∑
n=1

In(
VE
VT

) cos(nωit)

]
The first term (depending by I0(VE

VT
)) is a DC term, so an offset term;

with n = 1 we have the fundamental harmonic contribute, so with n ≥ 2 the
distorted terms, came out due to the non-linearity of the system.

Taking off of the parenthesis the I0 term, we obtain the following relation:

iC = IC = ISI0(x)e
VE
VT

[
1 + 2

∞∑
n=1

In(x) cos(nωit)

]
So the plot shows the various contributes related to 2In(x)

I0(x)
; a little remark:

DC term is I times 1; I is the DC current. By now we will use the following
equation in order to represent the total collector current:

iC = I

[
2
∞∑
n=1

In(x) cos(nωit)

]
ω1 is the frequency (pulsation) of the fundamental harmonic, and it de-

pends on I1(x); ω2 = 2ω1 depends on I2(x), and is the frequency of the sec-
ond harmonic, the first generated by the non-linearity of the system. With
changing of n, the graphs show many contributes for the harmonics.

Let us assume for a moment that we are using a linear model; in small
signal model we wrote:

iC = gm · Vi cos(ωit)

Let’s define k as
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k = gm · Vi
We can write, in the linear model, that iC = k cos(ωit), where k is the

gain of the system; in this case the gain is constant, so the characteristic of
the system is a line; this equation represents only the coefficient for n = 1,
so the linear coefficient: proportional increase of the amplitude of the output
with increasing of the input amplitude.

The plot represents the non-linear model of the system; this drawing
shows that if we increase the input level output (so increasing x, supposing
that VT is constant), we obtain for low amplitudes of x a linear response, so
a constant gain (we can think that gain is the slope of this curve), and the
proportional increase of the amplitude; going to higher level of amplitude of
the input signal (so by increasing x), we have no more a linear increase, due
to saturation effects of the transistor.

The first part of the model is almost linear: this is the zone where linear
model can be used; note that with x = 1, Vi = xVT ∼ 26 mV (about 26
millivolt, but it depends on the temperature); 26 millivolt is a very small
signal: if Vi = 260 mV, we are surely in saturation zone! The small signal
model works only with small signals, so few millivolt of amplitude! The linear
model can’t predict the saturation effect because linearity does not generate
other harmonics (as known from Signal Processing Theory): a linear model
can produce only signals with fundamental component.

Now, considering (as already written) that

I , ISe
VE
VT I0(x)

We can observe something: I is a DC current (so fixed), but it depends
on Vi: if we change Vi (and so x), we can change I0 output value; VE is a
hidden function of x, so I is really fixed, but some particulars were missing.
There is a logarithmic dependence between VE and x:

VE = VT ln

(
l

ISI0(x)

)
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There is a fact: DC value depends on the amplitude of the input signal:
this can happen because we are using a non-linear device, so DC can be
modified by signals (this is obviously impossible in linear devices/models!).

We are interested on the output voltage:

vC = RCiC

If we look only part of spectrum that don’t consider DCs we can ignore
them; this can be done by studying only the second term of the equation:

iC = I

[
2
∞∑
n=1

In(x) cos(nωit)

]
So we don’t consider the 1 in the parenthesis, ignoring DC terms and

looking only at variable terms.
If we look at I1

I0
curves, we can see that gain decreases as the input am-

plitude increases; there is a phenomena called gain compression: gain is (as
already written) the slope of Vo on Vi; this slope decreases as Vi increases; if
Vi is high, spurious harmonics have a greater contribute respect to the main
one, so gain decreases because the system becomes less linear!

Little exercise

How can we know how many non-linearity is in the system? In other words,
how can we quantify the contributes of spurious harmonics respect to the
fundamental one? Let’s understand it with the following exercise:

Given a transistor amplifier with input Vi, output Vo:

Vi = 13mV; ZC = RC

The second hypothesis is useful because we don’t have to consider the de-
pendence of the output respect to frequency; the question is: draw spectrum
of Vo in dBc.
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Introduction: decibel (dB) is a measure unit for ratio; dBc is a carrier dB
unit: we calculate the ratio respect to the carrier, so respect to the harmonic
with the fundamental frequency.

Our goal is to calculate the second and third harmonics contribute respect
to fundamental one; we want:

vo(ω2)

vo(ω1)

∣∣∣∣
dB

=⇒ I2(x)

I1(x)

∣∣∣∣
dB

vo(ω3)

vo(ω1)

∣∣∣∣
dB

=⇒ I3(x)

I1(x)

∣∣∣∣
dB

So:

x =
13

26
= 0, 5

I1(0, 5) = 0, 4850 =⇒ 20 log(0, 4850) = −6, 283dB

I2(0, 5) = 0, 06 =⇒ 20 log(0, 06) = −24.44dB

I3(0, 5) = 0, 005 =⇒ 20 log(0, 005) = −46.02dB

So:

vo(ω2)

vo(ω1)

∣∣∣∣
dB

= 20 log(0, 06)− 20 log(0, 4850) = −18, 15dBc

vo(ω3)

vo(ω1)

∣∣∣∣
dB

= 20 log(0, 005)− 20 log(0, 4850) = −39.74dBc

If values are not good, like x = 1, 54, we must do linear interpolation
between the two near values (in the Bessel function’s table).

There are two ways, two approaches in order to treat non-linearity:

• Fight it: we can remove harmonics using resonant circuits or tuned
amplifiers; by removing the harmonics, we have the same gain; of the
linear-zone one.

• Use it: we can use harmonics in order to obtain frequency multipliers,
VGAs or other particular devices (realizing particular functions).
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2.4.1 Fight non-linearity : Compression

In order to fight non-linearity, we have to know it, so we must introduce some
definitions that can be useful to study and avoid problems. The two terms
we will introduce are useful because that can be found on datasheets or docs:

• 1 dB compression level

• IP (Intercept Point)

What is 1 dB compression level? Well, as already written, as the ampli-
tude of the input signal increases, gain decreases;

This graph show how the difference of the linear model (small signal
model) and non-linear model brings to have a 1 dB difference; 1 dB com-
pression level is the voltage level that gives 1 dB of difference between the
ideal output and the non-linear model output. At the begin, compression is
zero, because for small signals contributes of 2nd, 3rd and other harmonics
is almost zero; by increasing the voltage, that becomes important, so must
be quantified (for example with this parameter).

One of the effects of compression related to radio issues can be stud-
ied on modulations: QAM is a Quadrature and Angle modulation (digital
modulation), that represents symbols on a phase plane:

Compression can be critical because it changes the expected value of the
amplitude of the signal, so informations are lost; if the modulation is only
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on angle, like PSK (Phase Shift Modulation), compression is no problematic,
because all the information is in the angle. The same thing can be written
for analog modulations (FM or AM).

How to correct this kind of problems? Well, an idea can be predistor-
tion: a unit PA with distorsion can be compensated by introducing before
it another block, with a non-linearity opposite to the one of PA (example,
put quadratic block before square-root block, logarithmic before exponential,
and other...). We can put non-linear corrections in the digital part of the
system:

A LUT can implement something like this. The idea is measure the power
in the antenna, in order to introduce the non-linear correction, and modify
the predistortion information.

2.4.2 Fight non-linearity : Intermodulation

We written about two parameters; one was the 1 dB compression level, al-
ready described; now we are going to define another phenomena very bad for
circuits, phenomena that can not be fight: intermodulation.

We are reasoning on non-linear circuits, non-linear blocks; there are many
ways to express the non linear output; a way can be, given a vi input signal,
consider the linear term, the quadratic term, the cubic term and so on:

vi −→ Avi +Bv2
i + Cv3

i

An idea can be use power series expression. If we have a signal with fre-
quency fi, the linear term will be the signal with fi frequency; the quadratic
term will have a contribute with frequency 2fi, the cubic 3fi etcetera.

What if our signal is composed by two parts, one with frequency fa and
one with frequency fb ? Well, let’s study it:

Vi = va(fa) + vb(fb)

• The linear term will be a linear combination of the two terms:
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vo,1(fa) + vo,2(fb)

• The quadratic term, so the second order term, will have signals with
frequencies 2fa, 2fb, fa − fb, fa + fb.

• The cubic term, so the third order term, will be obtained by developing
the power of three.

The problem is, with multi-component signals, that spurious harmonics
go not only out of the original spectrum, but also into the spectrum, so
cannot be filtered (without damaging the useful component of the signal).
Inband terms can not be filtered, so we cannot get rid of them.

What is IP, and how is it related with intermodulation? Well, let’s try to
show it: if we have va and vb with amplitudes Va and Vb, if we increase their
values (they are input signals!) until they have values 2Va and 2Vb, we will
have something like this:

• The first order term output will be multiplied by two, like we can
expect;

• The third term, so the cubic term, will be multiplied by 8: eight is the
third power of two, so the third term harmonic will increase faster than
the fundamental: if we increase input level, we can have problems like
this, problems that can not be resolved.

The IP3, Intercept Point related to 3rd harmonic, is the intercept point
of the linear prosecution of the small signal model, and of the line that can
show how third harmonic increases it’s level respect to the other.
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Second order terms are not important, but third order terms are very
dangerous, critical. IP3 can be used to study the dynamic of an amplifier:

Going too low with amplitudes we confuse them with noise; too high,
noise it’s generated due to compression and intercept point.

In receivers (or transmitters) which is the effect for this phenomena?
Well, in transmitters, we generate interference to other channels! In LNA
(receivers) we separate channel with IF, but we have too strong components
in a part of the spectrum, so due to very strong transmitters (for example,
too near to the receiver) we have problems like this.
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Chapter 3

Applications of non-linearity

Let’s consider the following circuit:

With small signal analysis, we had:

vo = −gmRCvi

Now, we want something similar for large signals:

vo(ωi) = −Gm(x)RCvi

This is referred only to the carrier vi; this analysis can be used also on
tuned amplifiers.

Instead of gm we use Gm: large signal transconductance; it depends on
operating point and value of signal amplitude. As known, for the large signal
model, the output voltage is:

vo(ωi) = −RCI2
I1(x)

I0(x)
cos(ωit)
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We want something formally equivalent to Gm(x), so we can observe that:

vi = Vi cos(ωit) = xVT cos(ωit)

=⇒ cos(ωit) =
Vi
xVT

So:

vo(ωi) = −RCI2
I1(x)

I0(x)

Vi
xVT

Let’s observe, now, that:

I

VT
= gm

So we found a transconductance; now:

vo(ωi) = −gmRC2
I1(x)

I0(x)

Vi
x

So

Gm(x) = gm · 2 ·
I1(x)

x · I0(x)

We can calculate and measure the gain for different signal amplitude
values, in order to find that gain decreases as amplitude increases:

Where to use this? Well, the first idea can be... VGA: Variable Gain
Amplifiers! If transconductance changes with signal level, we change gain.

How can we use it? In a FM receiver: we don’t want that amplitude
change in the receiver, so VGA can be useful! In FM receivers there is a
chain of amplifiers that works on this idea. If the receiver is moving, we can
obtain some thing with almost the same amplitude.
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These are compressing amplifiers (for compressing receivers).
And for AM? Compression can be useful because information is in the

amplitude; we important part of the amplitude is the relative amplitude re-
spect of different times, but amplitude can change due to movements of the
receiver respect of the transmitter (like in cellular phones!). We have some-
thing good: signals we consider are in audio band, so 20 kHz; by using high
time constant amplifiers, we can measure the power of the signal for a long
time, so see changes due to movements and introduce average corrections:
changes of averages are very slow respect to the frequency of the signal, so
amplifying with high τ can be great in order to realize AGC (Automatic
Gain Control).

3.0.3 Amplifier with emitter resistance

We already showed a model that can represent the gain behaviour with large
signal, for the circuit without Re1: a circuit where emitter capacitor hides
for the signal both the emitter resistors. In order to increase stability of
the amplifier (where stability is paid with gain decrease and with a harder
mathematical model) we can use and study the next circuit instead of the
previous one:

Now we will analyse this circuit. In the previous circuit we had that
vBE = −vi, because there were no voltage drops (capacitor short-circuited
emitter to ground, for the signal, so the only voltage drop was the junction
one); now, in this circuit, there is current on Re1 = RE (the only emitter
resistance that signal can see), so we must write an equation in order to
identify only the useful part, the one that modifies the output voltage. This
part, this variable, is the vBE voltage. Let’s consider the following hypothesis:
we are considering large signals, but only the fundamental component, not
the other harmonics; so, for the ωi harmonic, we have:
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vi(ωi) = vBE + vC = vBE + iC(ωi)RE

iC can be written using the large signal transconductance; we formerly
defined x as the Vi normalized by the equivalent voltage for temperature, VT ;
this old relation is no more useful, because now there is RE resistance: all
the input voltage is no longer applied on the base-emitter junction.

We can do that:

x′ =
vBE
VT

Remarking that the voltage that controls the output, so the gain, is vBE,
not the vC term. We can write:

vi = Vi cos(ωit) = VTx
′ cos(ωit)

but:

iC = Gm(x′) · vBE
Remember: transconductance must be multiplied by the only interesting

part, so vBE; the argument of the transconductance function will be x′ instead
of x, no more useful. We can write that:

Vi cos(ωit) = VTx
′ cos(ωit) [1 +Gm(x′)RE]

We started from the fundamental component of signal on the mesh, so
we defined how input and iC are related. Remembering that:

Vi = xVT

We have:

x = x′ (1 +Gm(x′)RE)

This relation puts the normalized amplitude of vBE (so x′) in relation with
other terms; the non-linear behaviour of the circuit is in Gm(x′), but respect
to the previous equation, we have different argument to the non-linear term.

Now: what is the unknown in this problem? Well, x is the normalized
value of Vi respect to VT , x′ is unknown! We can not set the voltage source
to get x′, and x′ is in Gm, so we need it in order to have a good model for
the amplifier. We need an equation in x′, in order to obtain the normalized
value of the base-emitter normalized voltage.

Can we invert the equation? Mathematically maybe it’s possible, but it
is quite complex; usually, we use a recursive approximation, like the same:
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x′ =
x

1 +Gm(x′)RE

We have to solve it recursively:

1. The first step is consider x′ = x: substituting x in Gm, we watch how
much the equation is wrong;

2. The second step is: change values, trying to obtain something better;

3. Continue until the two terms have small differences!

The output (and so the gain) can be easily evaluated remembering that:

vo = −Gm(x′) · vBE ·RC

So:

Vo =
−Gm(x′)REvi
1 +Gm(x′)RE

This takes account for the fundamental of the non-linear behaviour of the
circuit with Re1.

3.1 Tuned amplifiers

For tuned amplifiers we mean amplifiers with a resonant (tuned) circuit as
load. Keeping the circuit without Re1, but putting a tuned circuit instead
of the RC , we have a load which impedance depends on the frequency of the
signal we introduce in the circuit.

Some refresh on tuned circuits; considering a LC circuit, we now that:
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Let’s observe that, for low frequencies, the capacitor can be substituted
with an open circuit, the inductor with a short circuit, so impedance is 0; for
very high frequencies, the capacitor is like a short circuit, the inductor like
an open circuit, so again impedance is 0. For the ω0 frequency, where:

ω0 =
1√
LC

We have infinite impedance, because positive and negative contributes of
the impedances are equal, so they delete themselves.

This was ideal; in real world, capacitors have leakage resistance and in-
ductance; inductors have resistance problems; the real equivalent circuit for
a tuned circuit can be the following one:

This is the standard model used in order to represent resonant circuits.
The maximum value of resistance in the circuit is obviously R: when the

reactances delete their contributes for the resonance frequency, remains only
the R contribute.

Something else: if we have a load, the impedance goes in parallel with
the tuned circuit, so R depends also on the load; if we plot the logarithmic
graph, we have something like this:

With changing R, changes the shape, but not the frequency position of
the peak.

Now, what is important to know? Well, the ratio of impedance in a point
respect to the peak; considering the resonance frequency ω0, we will consider
a frequency k · ω0; remarking that there is symmetry only in the logarithmic
scale, we can remember that:

Q =
1

2ξ

Referring to k as a multiplication factor for the ω0 frequency, there is an
approximation for the attenuation of the impedance:

X = Q

∣∣∣∣k − 1

k

∣∣∣∣
Now, let’s put this circuit into our amplifier:
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The collector current is controlled by base-emitter current; what is on
collector does not modify iC . We look at the collector voltage (iC · ZC):
voltage depends on collector’s load. Every contribute for every harmonic is
multiplied for the contribute of impedance in harmonic’s frequency, obtaining
something like this. Let’s observe that shape is not symmetric. We have:

vo(kωi) = I · |ZC(nωi)|
2Ik(x)

I0(x)
cos(kωit)

For this reason, there are two contributes to the non-linear behaviour:
the well-known one, so the one previously calculated with Bessel’s functions,
and the new one, depending by |ZC(nωi)|; we have to quantify this term, in
order to multiply it to the previous term. From now, let’s suppose that the
resonant circuit is tuned with ω0 = ωi, having so as resonance frequency the
fundamental harmonic.

We can identify X as the ratio between values of impedance in ωi fre-
quency and in kωi; we can write that:

X(kωi) =

∣∣∣∣ Z(ωi)

Z(kωi)

∣∣∣∣ = Q

∣∣∣∣k − 1

k

∣∣∣∣
Having this, we can evaluate X in dB, so sum it to the Bessel’s functions

contribute and obtain the output voltage theoretical value considering the
tuned circuit.

Let’s try with an example; given the old 13 mV amplifier, let’s calculate
the attenuation (respect to carrier) of the tuned amplifier. We know that,
with a resistive load (RC), we had:

vo(2ωi) = −18, 3dBc

Now, let’s calculate X2 = X(2ωi), so the ratio between impedance on
peak frequency and its double frequency:

X2,dB = 20 · log10

(
100

∣∣∣∣2− 1

2

∣∣∣∣) = −43, 52dB
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This term must be added to the original non-linear term, the vo(2ωi)
previously calculated with the amplifier without Re1 and with resistive load
on collector. We obtain:

vo(2ωi) = −18, 3− 43, 3 ∼ −61dB

Why are we doing this calculations? What they mean? Well, we formally
studied a circuit (the one without Re1) that had only resistive load; we intro-
duced a model of this circuit in order to define a frequency-dependent gain
and to study the dependence from the amplitude of the input of the har-
monic content of the output voltage. Now, we have a tuned circuit as load
of the former amplifier; the reference condition for studying the amplifier is
the old one, so the resistive load case: when our circuit works in resonance
frequency (supposed equal to the fundamental harmonic, so to the input sig-
nal harmonic), inductive and capacitive reactances have equal contributes,
so erase by themselves, and the equivalent load is already resistive; for this
reason, at the resonance frequency, the two circuits are exactly the same. In-
troducing a ratio between the n-th harmonic impedance and the fundamental
one is important due to use the old model: we already have techniques to
calculate the reference harmonic values, so by introducing this ratio we can
take account of the attenuation introduced by the resonant circuit.

The effect of introducing a tuned circuit instead of the collector resistive
load is increasing the attenuation of harmonics, reducing the non-linear ef-
fects thanks to this increased attenuation: we keep intact the fundamental
harmonic, and reduce the others!

There are at least two ways to use this idea:

• Tuned amplifiers: amplifiers with a resonant circuit that can reduce
spurious harmonics contributes;

• Frequency multipliers: given an input signal, if we put a resonant circuit
tuned on 3ωi instead of ωi, we have the greater level for the third
harmonic, not for the first, because the harmonics are attenuated. This
is a way to realize frequency multipliers. It can be used in order to
transmit 1 GHz frequencies, by realizing a 200 MHz oscillator and
multiplying its value. Another way to obtain the same effect is using
phase-lock loops. The quality of multiplication depends on Q factor:
there are sub-harmonics and super-harmonics, so harmonics in lower
and higher frequencies respect to the resonance frequency: the quality
of filtering process depends on Q factor (how much the filter band is
narrow).
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3.2 Oscillators

Now will be exposed an overview to a special exploit of non-linearity: the
realization of oscillators. We will write about sine oscillators, taking account
of some parameters: peak voltage, period, phase, spectral purity.

Spectral purity is the distance (evaluated in decibel) from the signal fun-
damental harmonic to the most high of the spurious harmonics.

If we want to build a sine generator we need to obtain a pulse, a δ in the
frequency domain; this can be done with a general block schematic like this:

A remark: this is a positive feedback system, so a system where feedback
signal keeps the same polarity of the output voltage signal. This system can
oscillate if the Barkhausen hypothesis are verified: given loop gain Aβ, we
need that |Aβ| = 1, ∠Aβ = 0◦; with this condition, the signal which enters
the loop remain exactly the same. We don’t want the same signal, because
we want a sine generator; in order to obtain out of the system a sine wave,
we can make the conditions satisfied only for a specified value of frequency.

Problem: we obviously can not have exactly unitary module (or phase
rotation of 0 degrees): components have tolerances, not exact values, so we
need techniques that can realize this problem: if the gain is less then 1, the
signal will decrease after a transient, if the gain is higher than one the system
will saturate; we need some way to resolve this issue.

The idea is using gain compression: using the transistor compression area
(not other areas), we can automatically make the gain stable: if amplitude
is too high gain decreases, if amplitude is too low gain increases, and so go
on); the only useful area is the compression one, in order to obtain a good
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effect of this type.

Issues where two: the first one, already solved, was the modulus one;
and phase rotation? Well, if phase shift is related with frequency, we can
find a technique to obtain in some frequency values 0 phase rotation. This
technique is based on resonant circuits: tuning a resonant circuit on ω0, we
can obtain a null phase rotation for our system. Changing the quality factor
Q of the resonant circuit we change the slope of the phase rotation: higher
Q, higher slope.

This system so can be realized with a tuned amplifier connected to a β
feedback block:

The first idea cannot be used, because connecting the feedback block to
the input we obtain a negative feedback, so our system does not work as an
oscillator; the good idea is connect to ground the base of the transistor, and
to the emitter the β block: this is a common base configuration! There is
a gain similar to the common emitter configuration one, but no inversion of
phase. By using capacitors we can decouple bias and signal, as usually done.

This is the fundamental scheme for oscillators based on transistor ampli-
fiers: tuned circuits + common base amplifier. What can we use for β block?
There are some ideas:

48



• Colpitts oscillator: by using a capacitive voltage divider as β, we obtain
an oscillator.

Capacitances do not change frequency behaviour, because:

vR =
1
sC2

1
sC2

+
1

sC1

All s terms are simplified, so there is no frequency dependence for the
voltage divider capacitor. This is not true at all, because into the
transistor we see, from the emitter, a resistance equal to 1

gm
, where gm

is the transconductance; often we can ignore this fact, but we can solve
also this problem (in fact it introduces, as we can proof, a dependence
on frequency to gain) by introducing between β and emitter a voltage
buffer circuit.

This can be seen as a two-stage system, or as a differential pair.

• Hartley oscillator: same circuit, same observations, with inductive volt-
age divider instead of capacitive voltage divider.

• Meissner oscillator: uses a transformer as feedback block.
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3.2.1 Another technique for realizing oscillators

There is another way to obtain oscillators: RLC circuits. We can know, by
calculating the transfer function of a resonant circuit, that if we introduce
a current pulse (so a Dirac delta in time domain) we obtain as output a
sine wave; if there is no resistance, there is no power loss in the circuit, so
voltage continues to oscillate, obtaining a sine wave. In real circuits there
is always some resistance term, so the output voltage has a transient that
brings voltage to zero.

The idea can be the next one: if we cancel the resistor contribute with
a negative conductance (realized by an active network), we can obtain an
equivalent RC circuit, so an ideal resonator. This can be done with NIC
(Negative Impedance Converter):

Using the well-known equations, we can write that in v− there is the same
voltage as v+, so Vi; Vo and Vi are related by the voltage divider:

Vi = Vo ·
R

R +KR
= Vo

1

1 +K

So:

Vo = Vi(1 +K)

By studying the mesh, we can write that:

VZ = Vo − Vi = KVi

We can quantify the input current Ii as the current on Vz, considering
satisfied the hypothesis of null currents on the pins of the active device:

Ii = −KVi
Z

We can so write that the impedance seen in the pins of this device is:
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Zi =
Vi
Ii

= −Z
K

We can do this trick, because on Vo we have a higher voltage of Vi. There
is still a problem: we need to adapt the two resistances to the same val-
ues; we can use the non-linear behaviour of the system: if we make the Vo
voltage decrease we can make Z decrease, so changes of voltage make gain
and impedance compensate; saturation and other non-linear effects of this
circuits can so be used in order to tune the two resistances (or conductances),
in order to solve the problem.

Usually, this technique is realized with only transistors, in order to obtain
high frequency oscillators, like this:

3.3 Logarithmic Amplifier

Now, we want to obtain specific non-linear behaviours, from some circuits.
Given a non-linear transfer function shape, we want to obtain something sim-
ilar to it, with some approximation. Now, what we will study is a circuit that
can realize logarithmic transfer functions. Our transfer function must be as
close as possible to the ideal one; obviously, using the circuit approximation,
we will obtain some differences respect to the original case. There are two
ways to obtain non-linear behaviours:

• Use a continuous approximation: obtain something similar to the orig-
inal transfer function, approximating it with a continuous function.

We have an actual transfer function, different from the ideal one.

• What we can also do is approximate the ideal transfer function with a
set of lines:

This is called piecewise approximation: there are many lines that ap-
proximate the shape of the original transfer function.
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In our case, the transfer function behaviour is the logarithmic behaviour;
with piecewise approximation we can obtain something better respect to
continuous approximation, but with very complex circuits; we will use the
worst approximation, but with simple circuits.

We will follow as usually a top-down approach: we will begin from the
function, from the mathematical model, and then come to a circuit realiza-
tion.

The beginning function is the next one:

Vo = log(Vi)

So, we want to realize a system that has as output the logarithm of the
input voltage. This is the simplest type of logarithmic expression, but we
can introduce some other terms:

Vo = k1 log [k2(Vi + k4)] + k3

We can have many effects, gains, offsets on input, offsets on output; k4

is a critical (as we will see) term, because it introduces a shift on Vi. This
operation can be represented with the following block diagram:

When we design the circuit we must understand what kind of circuit must
be used, in order to treat every parameter correctly; parameters are four, so
we can think to have 4 degrees of freedom. This is not true: we know that:

log(AB) = log(A) + log(B)

k2 introduce the same effect on transfer function that k3, so the two are
interacting.

In order to represent well a logarithmic behaviour, a good idea can be
this: we can represent the x-axis with a logarithmic scale, so obtaining the
same ratio with equal intervals. In logarithmic scale, a logarithmic function
will be, obviously, a line:

If we plot a generic transfer function and we find how it changes when
we change parameters, we have a line. When we change k1, we change the
slope of the line, we rotate it; k2 shifts it horizontally, k3 vertically. If we
change k4, we have something bad: changes of the shape are not equal in
every zone, because if we change for example of 50 mV the amplitude of
the input, it will become important for the low values (like 0,1 to 1 V), but
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almost zero for higher values (like 10 to 100 V decay). We don’t shift or
rotate the characteristic, but we change its shape, depending on the point
we consider! We will have an error very important for low values, and almost
zero for high values.

Blue line represents an ideal function (with no offset or input changes),
and ∆k4 is the effect of an offset: red lines are actual characteristics.

Let’s now try to build a circuit with this transfer function; we need a
logarithmic core, so something that can realize a logarithmic relation; this
can be simply a junction, a diode:

Vd = ηVT ln

(
IE
IS

)
We have to send in junction a voltage that can bring the right IE; we can

force this current with this circuit:
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The ideal operation amplifier can provide this thing; in fact:

I =
Vi
R

=⇒ Vo = −VD

Due to 0 V in the minus pin, and so in the plus pin; we have that:

Vo = −VD = −ηVT ln

(
IE
IS

)
Let’s compare this with the maths; we have that:

k1 = −ηVT
With this circuit we can add an amplifier, in order to have a variable

gain. k2 is the coefficient of Vi, so:

k2 =
1

RIS

Changing R we can change k2, but it’s no good: IS has a strong depen-
dence on temperature! k3 can be realized by adding something, so by an
adder. k4 is an offset of Vi, so we can control or compensate it with any
circuit.

As already written, we have strong dependences with temperature: there
is η, VT , IS; can we improve this circuit by making some changes? The
answer obviously is yes: first approach uses the following circuit:
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We have that:

vB = vA + vb2 = vA + VTη ln

(
IE
IS

)
=

= −ηVT
(
Vi
RIS

)
+ VTη ln

(
IE
IS

)
=

Due to the properties of the logarithmic function:

= ηVT ln

(
Vi
RI

)
This, obviously, can be written if the two junctions are identical. We have

that:

vo = AvB

Note that VT is still present; we can compensate VT by making the gain
of the amplifier related with temperature ϑ; this thing can be done with
bolometers, with temperature-dependent resistors.

Let’s remark another thing: curve has this behaviour:
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If we don’t change A with ϑ, current will depend on ϑ; change of ϑ
implies change of k1, so of the rotation of the characteristic. The center of
this rotation is the point where there is no change of position due to the
rotation; known that:

Y = VTX

Where VT is the changing term, the only point where VT don’t change Y
is X = 0. Rotation is around the point corresponding to zero volt output;
when the argument of logarithm is one, so

Vi = RI

We have vo = 0, so there is the center of the transcharacteristic. This
center should be placed in the middle of the characteristic, in order to min-
imize errors! Phase rotation are in fact more critical if rotation center is in
the middle.

One more point: we said that k4 is critical because it is connected to Vi;
this is not the only issue regarding Vi value: with low values, we already watch
that there are shape problems due to the logarithmic scale and input offsets;
for high values, we need to use a better module of the junction (considering
diodes as junctions): Giacoletto’s model considers that semiconductors have
a resistive behaviour far away from the doped part, so between the base pin
B and the diode zone we have an RBB′ resistance, that have values between
the 10 ohms to the 100 ohms. The voltage drop error becomes important
for high values of Vi, because by increasing Vi we increase the current on the
junction, so introduce a linear term (resistive term) that will be added to the
logarithmic one, introducing another voltage drop for high amplitude values
of the input. This can be the real characteristic function:

Good thing: with transistors instead of diodes, this problem is not really
important, because of this:

Current does not enter in RBB′ because the base of the transistor is
connected to ground, so we have less offset errors for high input voltages.
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Another information: between the emitter of the logarithmic junction
(left transistor) can be a good idea to introduce a resistance R; this transistor
configuration is an amplifier, with common base configuration, respect to the
feedback signal; it can increase the voltage, because the β parameter of the
loop gain can be higher than 1, so bring up the op-amp transfer function.

The circuit can oscillate: op-amps are compensated in order to put the
second pole in the point where there is unitary gain: the voltage follower
configuration. Voltage follower configuration for an operation amplifier is
the worst case: the most wide frequency spectrum, with the least voltage
gain (unitary); if we shift vertically this transfer function, we don’t respect
the margin of stability introduced by the producer of the op-amp, so we can
have a phase rotation of 180 degrees, and obtain a positive feedback instead
of a negative feedback. Putting R we decrease the gain of the amplifier,
obtaining the original second pole position.

3.3.1 Bipolar logarithmic amplifier

A problem of the circuit presented is the following one: it can handle only
positive voltages, due to bipolar junction transistor saturation zone; we ac-
tually can have inversion of polarity, so handle negative signals, simply by
changing the circuit this way:

Let’s pay attention to this thing: we have a characteristic of the circuit
that jumps the origin and has, for the other value (far enough from the
origin), a logarithmic behaviour.

This amplifier is really useful: it can be used in many cases in order to
treat signals with compression; in a receiver, for example, we need to com-
press signal due to avoid bad effects like saturation or frequency poles; after
the treatment in a digital part of the receiver, it must be de-compressed; in
order to de-compress, we must apply an opposite transformation, so an oppo-
site non-linear compression; if the logarithmic amplifier applies a logarithmic
non-linearity, with an exponential we can obtain the opposite result!

To realize an exponential transfer function we can use again diodes, but
connected to the input instead of in the previous place, the feedback; current
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is converted by the diodes, and feedback resistor converts current into voltage,
solving our problem!

3.3.2 Piecewise Approximation

As already written, there is another approach in order to realize logarithmic
non-linearity with electronic circuits: piecewise approximation. This type of
approximation consists of realizing different shapes with lines, whose slopes
depend on input voltage amplitude. This is the mostly used realization for
the electronic logarithmic approximation, for example in RSSI (Received
Signal Strenght Indicator: a device that measure power in antenna output);
by using the logarithmic amplifier, we can measure and treat with the same
resolution very low variations and very high variations, because we are in a
logarithmic scale; in linear scale, this is not possible. In integrated circuits,
like in mobile phones or radios, these are the most common techniques.

Given a chain of amplifiers, where every one has a characteristic like this:

Every amplifier has this dynamics: for an input voltage from 0 to 100
mV there is a voltage gain of two, then only saturation; we have something
like this:

In the first amplifier we introduce a signal vi; out of it, there will be the
already seen characteristic: from 0 to 100 mV gain of two, then saturation;
the output of the first amplifier will be the input of the second one; when
the first amplifier reaches 50 mV, out of it we will have 100 mV (due to the
voltage gain), so the second amplifier will saturate; like before, the output
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of the second amplifier will be the input of the third amplifier; when the
second amplifier reaches 50 mV, so that the first amplifier reaches 25 mV
(we are obviously supposing that all it’s linear, before saturation!), the third
amplifier will saturate. Adding this three signals, we will obtain something
like this:

Between 0 and 25 mV we will have a total gain of 14: at the third stage
the gain is equal to 8, at the second equal to 4, at the first only 2; adding
the three gains, we obtain for the first piece a gain equal to 14; between 25
and 50 mV, with the same operation, we can compute a gain equal to 6; final
piece, from 50 to 100 mV, gain equal to 2.

This is an approximation of the logarithmic function; with enough am-
plifiers (all equal!) in the chain, we will approximate better the logarithmic
shape.

Every amplification stage is a differential amplifier:
Let’s remark that with this technique we can not only realize logarithmic

functions, but every function: changing the V ′ voltage we can change the
shape of the piecewise approximation, and obtain almost every shape!

3.4 Mixers and Multipliers

In the description of a general radio receiver/transmitter architecture, we
already used a lot of mixers: every time we needed to do multiplications,
there were a mixer to do it. Actually, mixers are useful in a lot of other
applications. Every mixers has at least two inputs and one output; the
function that it must realize electronically is:

Vo = Km · vx · vy
The symbol with the wider pins means that it works with differential

signals.
We will focus our study in frequency domain, so in the effects that mixers

have in the frequency spectrum: time domain is really hard to study with
multiplication operations, so we prefer this type of analysis.
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The ideal multiplier realize a function like the already seen one; the actual
multiplier has terms like these:

Vo = Km · (vx + ∆vx) · (vy + ∆yy)

This gives many spurious terms respect to the previous function:

Vo = Km · Vx · Vy + Ex · Vx + Ey · Vy + Eo + ...

There are many terms of second and higher order, depending on the
spurious harmonics.

The ∆ terms are offset or other kind of spurious terms and non-idealities.
An interesting spurious term is the feedthrough: if mixer has unbalance con-
tributes, so can not balance correctly inputs, we have something like this:

Vo = KmVx(Vy + Vyo) = KmVxVy +KmVxVyo

The first member of the equation has, in the parenthesis, an offset (DC)
error on Vy); this term causes the Vx feedthrough error: the Vx signal comes
in the output, but in the ideal world it don’t comes! The unbalanced stages
causes this type of errors.

Another note: if we write something like:

vo = kmvx(t)vy(t) + kmvx(t)Vyo

There are higher order terms: almost every harmonic with frequency
equal to a linear combination of the basic two comes out:

Mfx ±Nfx, ∀M,N ∈ N
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We usually carry out only for lower product terms (M,N = 2, 3, 4), cause
higher terms are less influent; the most dangerous terms are the intermodu-
lation ones: other terms can be removed with filtering, these no.

Amplifier mixers

The first idea can be the following one: given a linear amplifier, given two
signals with different frequencies, fx and fy, we need an adder; as long at it
is linear, we will have out of it two contributes: fx and fy. Non-linear terms
are of two species: harmonics and intermodulation terms.

The multiplication of the two signals can be obtained as the second order
distorsion term of the circuit: considering the power series of the signal, we
can take the (vx + vy)

2 term: with vx · vy.
In order to realize this type of mixers, it’s better to use transistors: op-

amps are too linear, transistors have more non-idealities. The drawback of
this approach is that we are interested only on vx · vy, not on every term;
here, he have a lot of other terms, that we need to filter, and filtering is a
hard process.

Real multipliers

Now, let’s try to design a real multiplier, not one where multiplication is a
side effect of the usual operations; as we know, for small signal, we have that:

vo = −gmRCvx

We know that:

gm =
IC
VT

Changing IC , we can multiply vx for the changing IC ; IC can be changed
by putting a second transistor, where a vy signal can control IC and so gm;
this is named transconductance amplifier, because it works by controlling gm.

vo = −VyRCVx
REVT

Because:

IC ' IE =
vy
RE
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Pay attention: this is the small signal model, so this amplifier can work
only with small signals; because of this, we have no feedthrough terms: small
signal terms are only linear, so there are no higher terms (or with very small
amplitudes), and no feedthrough!

Now: can we apply a sine wave? The answer is yes, but only with one
condition: in order to don’t turn off one of the transistors, we need to have
a sine wave with DC component, so with an offset:

vx = sin(ωt) + Vx

Where Vx is a DC voltage. Both vx and vy must have an offset, so this
multiplier is named single quarter multiplier : it can work only in the first
quadrant, so vx and vy both positive. We can also add a filtering circuit: by
introducing Zc(ω) instead of RC , so a tuned circuit, we can filter unwanted
spectral components.

This circuit can be modified by adding another transistor, obtaining in-
stead of the higher transistor a differential pair:

Now, the relation previously introduced is valid, but we can have positive
or negative vx values; this is the first type of balanced mixer.
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Problem for vx is solved, but not for vy, that must be positive; the solution
for this problem, is the double-balanced stage:

Now, both inputs are differential, but we need two differential stages,
and we can have CMRR problems. This can be built with bipolar or MOS
transistors; these are known as Gilbert cells, from the electronic engineer that
invented they in the ’60s.

Which is the limit of the Gilbert cell? Basically, the problem is that it
works using the voltage-to-current transfer for the differential stage; we can
only use small signal functions, in order to have linearity and so avoid the
feedthrough terms.

We have that

∆I = kVx

We want to have linearity for more amplitude values of the small signal
ones, without non-linear terms. In order to do this, we need to improve the
linear dynamics range. An idea can be the one to use negative feedback ; there
are at least two ideas:
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A trick can be introducing these two resistances, in order to have the
same effect of the RE on the single transistor: decrease the gain and increase
stability and linearity. With matched resistances, we can obtain something
very good; if resistances are not matched, we can have many problems, like
common mode issues.

Something better can be the following circuit:

This can provide even more linearity than the previous circuit: balanced
stages! We have in the two stages vx, so we can say that base to emitter
voltage drops are the same, and:

ix =
vx
Rx

and obtain a voltage to current converter for very high amplitude dynam-
ics range. This can be done only in integrated circuits, with matched current
sources.

Now: the differential pair on the bottom can be replaced with the wide-
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amplitude-range one, but the upper one no; we can do something else: our
problem is that base-emitter junctions are not linear; in order to linearize
the system, we can put something with opposite non-linearity behaviour, to
obtain a linear behaviour. Introducing a current to voltage conversion with
logarithmic behaviour (diodes), so a voltage to current exponential charac-
teristic, we can obtain linearity!
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Chapter 4

Phase-lock loop

A phase-lock loop (or PLL) is a system, a functional unit with an input and
an output, that can realize many functions; the first one can be the filtering
one: given an input with a lot of noise, in the output it provides a very clean
signal with a nicer shape.

In frequency domain this means that a spectrum with many spurious
harmonics will be filtered, so out of the block there will be only a line.

A PLL so can seem similar to a filter; there are many differences between
this two kind of circuits: a basic difference can be the fact that this is a
filter with very very precise parameters that we can control better respect to
a resonant circuit; with a PLL we can automatically change the frequency
of the signal in input, and it will synchronize its parameters to it, without
re-tune any circuit: it can be automatically do a frequency line shifting and
filtering. The filtering function is not the only one that it can realize, as we
will see later: in every frequency synthesizer we have PLL, in order to obtain
very precise frequency of the harmonics.

There are many ways to see, study and use a PLL: synchronizers, filters,
synthesizers are the basic functions that it can provide.

4.1 Mathematical model of PLL

Phase-lock loops can be useful every time we want to obtain, out of it, a signal
with a well defined phase relation with the input; in this part of the text the
keyword will be phase: usually in electronics the fundamental variable in
this contest is frequency, but now it is not very important (only in the side
effects of the study), because of the very important studies on phase.

A little note, about phase synchronization: using (in order to have simple
formulas) a sine wave as input of our signal, we have that:
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vi = Vi sin(ωit+ ϑi)

There is an explicit term of the phase; in input, we consider to have
a cosine wave (in order to simplify the following expression), with another
explicit term of the phase:

vo = Vo cos(ωot+ ϑo)

Now, if we look at the signal with the scope, we can have two cases:

• If ωi 6= ωo, one signal is fixed, because the oscilloscope trigger synchro-
nizes itself on the the signal, but the other signal will shift respect to the
first; this happens because there is a time-dependent phase difference
function between the two signals, due to the difference of frequency:
as we will see later, frequency can be thought as the derivative of the
phase, so have a different frequency means have a different velocity of
changing phase between the two signals, so one signal will shift respect
to the other because there is not a constant relation of phase; this con-
dition is named not-locked condition: there is a continuous phase
shift on the screen of the scope.

• If ωo = ωi, but with random precision, exactly, we expect to see this:
the phase difference between the two signal exists, but is constant,
so it will remain the same, cycle after cycle. This is named locked
condition.

Only through a PLL we can synchronize exactly the frequencies of the
two signals; every time we have generators apparently matched, but inde-
pendent, there must be some difference, so minimum variations of the two
frequencies generate a variation in the difference of the phases, so phase shift.

This is the block diagram for a phase-lock loop:

There are some blocks:

• Phase detector (PD) : something that can measure the phase of a signal;
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• Filter (F) : the loop filter;

• Voltage Controlled Oscillator (VCO): given as input a DC voltage, the
output of this block will be a signal whose frequency depends on Vc.

We have that:

vi = Vi sin(ωit+ ϑi)

vo = Vo cos(ωot+ ϑo)

Let’s remark that a PLL can work also with other types of signals like
square waves, but for this analysis sine waves are the easiest way to obtain
results and generalize them.

First step: the vd voltage, out of the phase detector, can be a non-linear
relation; we suppose to linearise it, so to consider only in a part of the
characteristic and approximate it to the tangent line, in order to have this
relation:

vd = Kd(ϑi − ϑo)

Often we define a phase error as the difference of the input and output
phase:

ϑe , ϑi − ϑo
Second step: when we apply a control signal, there is a ∆ωo function of the

control voltage vc; again, this is not linear; by linearisation we approximate
the characteristic as a line and get the change of frequency of the VCO as
proportional to the vc:

∆ωo = Kovc

Finally, the F filter has a transfer function dependent by s, so something
like this:

vc(s) = vd(s) · F (s)

Kd is known as the gain of the phase detector, Ko as the VCO gain,
so the loop gain can be calculated as the product of the three gains: PD,
filter and VCO:

GL = Kd ·Ko · F (s)
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A remark: Kd and Ko are not depending on frequency; if we want to
consider DC gain, we can evaluate this function in s = 0 (frequency zero).

Remember: our circuit, our system, works on phase, not on voltage, so
the next step will be introducing a well-defined transfer function of the entire
system, depending not on internal voltages, but on input and output phase;
we will consider all this stuff in the Laplace transform domain, so our H(s)
transfer function will be:

H(s) =
ϑo(s)

ϑi(s)

Now, we have some relationship between frequencies, voltages and... phase.
We need to remove all dependences on every variable but phase, in order to
quantify only phase variations. Assuming linear relations between voltage
and phase, we know that frequency is the time derivative of phase, so:

∆ωo(t) =
dϑo(t)

dt

In the Laplace domain, this becomes this:

∆ωo(s) = sϑo(s)

We already know that:

∆ωo(s) = Kovc

But:

vc = F (s) · vd
And:

vd = Kd(ϑi(s)− ϑo(s)) = Kdϑe

By substituting, we obtain:

sϑo(s) = KoKdF (s) [ϑi(s)− ϑo(s)]

Here we can find every loop parameter: Ko, Kd, F (s): these are circuit
parameters, that designer knows and can modify; ϑi and ϑo, function of the
frequency, are the input and output of the system; all the transfer function
can so be written as:

H(s) =
ϑo(s)

ϑi(s)
=

Ko ·Kd · F (s)

s+Ko ·Kd · F (s)
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This is similar to the transfer function formula of a generic feedback sys-
tem; only difference is the s term to the denominator, instead of 1; this can
be explained easily, because this circuit contains a kind of implicit integrator,
in order to realize the conversion from the frequency ω to the phase ϑ. The
term lock derives by the fact that frequency is different less then a constant;
mathematically, we can say that, by maintaining constant the phase differ-
ence, we can maintain equal the derivatives of the frequencies, because the
difference of frequencies has no time variation, so the derivative of the phase
difference is null; due to linearity, the two frequencies of the input and output
signals are the same). Filter must be a low-pass filter, as we will see later,
so if we change the frequency, ωi, we will have different frequencies, and vd
changes; if change is small, vd change can go through the low-pass filter, vc
so change and so changes also ωo due to the local oscillator, and ωo becomes
equal to ωi.

The only stable condition in this loop is the lock one.
We can define a phase error related to the transfer function as:

ϑe(s)

ϑi(s)
=

s

s+Ko ·Kd · F (s)

As usually happens in feedback systems, when we study part of the trans-
fer function, we obtain the same denominator every time, as known from the
theory of the Automatic Controls. This can be useful when we analyze the
function, in known cases as the second order one, because we already known
the behaviour of the system with variations of paramters like ξ or ωn.

4.2 Loop filters

Let’s try to begin with circuits, beginning with the most known part of
the system: the loop filtering. Trying to change filters characteristics and
parameters, we will see how they can change loop parameters, and so the
behaviour of the system.

Short circuit

The first type of filter that we can try is the simplest: a direct connection:
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The transfer function of this circuit is 1: it is independent by s, and
unitary, because there is no leakage in the short circuit. Substituting this in
the original transfer function, we will obtain:

H(s) =
KoKd

s+KoKd

Let’s remark that filter has order 0, the loop transfer function order 1;
this plot can tell us many informations about the behaviour of the system;
first question: ω is in some way related to ωi and/or ωo ? The answer is no,
and if there is some relation we don’t have to care about it: we are studying
phase, not frequency, so let’s forget this problems! ω is in fact related to the
phase changes in the system. We can divide the plot in two parts: the first,
constant part, and the decreasing part: in the first one, as long as we are in
the constant zone, we have that ϑo = ϑi. In the second part, ϑi is different by
ϑo; this plots says that the phase-lock loop can work, but only if the signal
does not change phase too fast! In fact if we have a phase step, so a very
fast variation of phase in the input, after a transient ϑi may or may not be
equal to ϑo.

RC cell filter

Another way to realize the filter can be the following one:

We have that:

F (s) =
1

1 + sRC
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Given ξ and ωn, we know that, now:

H(s) =
KoKd

s2RC + s+KoKd

We have only two parameters, and four variables: we can change only
ξ and ωn by changing R, C, Ko and Kc, but changes of a parameter cause
changes in the other one, so this circuit cannot be controlled well; in a more
general contest, we can change three parameters; in a general Hg(s), in fact:

Hg(s) =
H(0)

s2 + 2ξωns+ ω2
n

We cannot modify every parameter of the system; a better circuit can be
the following one:

Now there is a low-pass filter, with a better control of the parameters:
with this resistor, now, we can modify in an independent way the two pa-
rameters.

Active RC cell

For what concerns DC gain, there is another way to realize low-pass filters:
we can introduce, if we want to increase H(0), a low-pass filter realized with
an op-amp, with a kind of integrator:

With active components so we can easily modify gain; by having high
gain, we can have a wide frequency range with a very small phase error in
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the loop input (close to zero), and this can be useful every time we need
wide dynamic. Ideally, if we put no resistances in the feedback block of the
amplifier, we can obtain infinite gain (because we have, as gain, −Z2

Z1
, but if

Z2 →∞ as happens in DC, the gain becomes infinite).
This was one of the two approaches to realize high gain circuits; the other

approach is based on charge pumps, so circuits that can, with null phase error
of the signals that pilot the switches, increase voltages:

4.2.1 Steady state phase error

An important definition, very useful for the study of the phase-lock loops, is
the steady state phase error: it is the value of the already defined phase
error, with very high values of t; for very high values we mean that transient
must be ended, and that the system is in the steady state. The steady state
phase error is so the value of the phase error after the transient; this value
will be very useful in order to understand if the system locks or not.

To evaluate this expression, we can evaluate ϑe(s) in the Laplace domain,
using the final value theorem (known from the Analysis courses):

ϑe,r = lim
t→∞

ϑe(t) = lim
s→0

sϑe(s)

Let’s start from the lock condition, we are interested to study the steady
state phase error after some changes of the input; as already said, there will
be a transient, and then... ? Well, in order to start with this subsection, we
need to calculate a better expression that quantifies the steady state phase
error, ϑe,r; given the ϑe(s), previously calculated, we can obtain:

ϑe,r = lim
s→0

sϑe(s) = lim
s→0

s2ϑi(s)

s+KoKdF (s)
=
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= lim
s→0

s2ϑi(s)

s+KoKdF (0)

We are interested only on DC terms, so instead of the entire F (s) we can
keep by now only the F (0) term, so the DC gain of the filter. This value
changes with the type of filter:

• The RC cells have gain, in s = 0, equal to 1;

• The integrator has infinite gain (so it goes to saturation);

• There is an intermediate solution, using amplifiers with a feedback
resistor; the DC gain becomes:

F (0) = −R2

R1

Distinguish the two cases of finite and infinite gain values can be useful
for the analysis that we are going to do.

Phase step response

As already said many, many times, the fundamental variable when we are
studying phase-lock loops is phase. Let’s consider an input signal with this
phase behaviour:

There is a discontinuity on the origin, because there is a rough change
of phase. This type of behaviour can be found in many situations, like for
example PSK (Phase Shift Keying, a notorious numeric modulation). What
happens to ωi, with a signal like this? Well... nothing! Frequency, if we
don’t consider the transient, remains the same! This can be simply proof:
considering the fact that a step, in the Laplace domain, can be represented
with this:

ϑi(s) =
∆ϑi
s

Where ∆ϑi is the difference of the values of the phase before and after
the discontinuity, we can replace this expression in the limit, obtaining:
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ϑe,r = lim
s→0

s2 · ∆ϑi
s

1 +KoKdF (s)
= 0

This limit goes to 0, because F (s) has always a non-zero value. This
result is real, as we can say considering the following idea: if we need to keep
the same frequency, due to a constant phase difference variation, we don’t
have to change vc; if vc does not change, vd does not change, so neither the
phase difference, independently by the loop filter.

Frequency step response

Now let’s consider, instead of a signal that has a phase step, a signal with
a step in frequency. A frequency step causes a linear change of the phase
between the original signal (without frequency step) and the new one.

In mathematical model, respect to the previous signal, we have to divide
for another s:

lim
s→∞

s2 ∆ωi
s2

s+KoKdF (s)
=

∆ωi
KoKdF (0)

So, we have two cases:

• If F (0) = A <∞, the limit is a finite value, so a constant term;

• If F (0)→∞, the limit tends to 0.

We are studying the phase error, so our system in both cases will guaran-
tee lock condition: fixed phase difference in fact means that frequencies are
equal. Considering this model and this two types of signals, we will have all
the times lock condition respected, independently from the amplitude of the
frequency step.

4.3 Phase detectors

We are going to look inside the blocks of the PLL system, beginning from
the phase detector. Circuits that we must use as PD depend on the type of
signals we have to use: analog or digital signals request different hardware
implementations. For analog circuits we will use op-amps or transistors, for
digital circuits logic gates and flip flops.
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4.3.1 Analog phase detectors

The most common way to realize analog phase detectors uses multipliers as
phase detectors. Let’s understand why: given vi and vo signal of this type:

vi = Vi sin(ωit+ ϕi)

vo = Vo cos(ωot+ ϕo)

Using an analog multiplier, we will produce two harmonic terms with two
frequencies; considering that we have ωi = ωo in every PLL system, we will
have: zero frequency (DC), and 2ωi. Supposing so that multiplier is ideal,
and that there is a low-pass filter that keeps only the zero frequency term we
will have:

vd =
KmViVo

2
sin(ϑi − ϑo)

Where Km is the gain of the multiplier.
We want to obtain, beginning from here, the following expression:

vd = Kdϑe

We need to make some assumptions, that can make this system work.
First step: let’s remember that we are thinking about phase shift: if we have
a phase shift longer that a period, we can not determine how long it is re-
ally, because sine wave is periodic of 2π: we have to consider a limit range
of applications, so to consider only [−π; π] as zone where can be calculated.
Another observation: if we go too far from origin, we can introduce an in-
version of sign for the slope: gain can be defined, but with negative values,
so introducing a minus in the loop gain transforms the negative feedback in
positive feedback, making the PLL system unstable; due to this observation,
we will consider the phase evaluation in

[
−π

2
; +π

2

]
.

Last observation: we want a relation between ϑe and vd linear, propor-
tional with a gain Kd; this can be obtained only if we consider little phase
variations, in order to consider a linear behaviour of the sine wave next to
the origin of the x and y axis. So, we have this actual relation:

vd =
KmViVo

2
sin(ϑe)

So a non-linear function; for small ϑe, we can say that:

vd '
KmViVo

2
ϑe
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Obviously:

Kd =
KmViVo

2

This expression says us something bad: can we, as designers, choose the
phase detector gain? The answer is no: it depends on the amplitude of the
signal, so we must know and fix Vi and Vo in order to define a gain in some
way.

4.3.2 Butterfly characteristic

We are going to ask some questions, and give the answers, in order to realize
some kind of theoretical lab experiment : we will try to find what happens
starting from our actual knowledge, and understand the following questions:

• When the loop locks?

• When the loop stays locked?

In order to understand and introduce this problems, we will consider a
traditional study of a feedback system: we will open the loop, dividing the
VCO block from the others, considering so a fixed output frequency, with rest
value ωor, and we will consider it as the center of our reference system; we will
plot the diagrams of vd and vc depending by the input signal frequency, ωi,
considering it variable and ωor fixed. Let’s remark that there is no relation
between ωi and ωo, because now the system has the loop open, so there is no
correction to the vc, connected to a fixed Vcr value.
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Assuming that F is a low-pass filter transfer function, we can immediately
write that vd is the voltage out of the phase detector, and vc is simply the
vd voltage filtered through F . In phase detector, that is analogically realized
with a multiplier, we obtain an harmonic contribute with frequency equal to
the difference of the ωi and the ωor: considering (as already written) ωor as the
center of the reference, we will compute the various ωi terms considering the
difference between this center. For vd, does not matter how many frequency
difference we have between input and output signals: gain is only defined by
Kd, equal to:

Kd =
KmViVo

2

Keeping the same amplitudes of input and output signals, we will not
have any frequency difference, so vd spectrum is constant. Considering the
same origins for the vc spectrum and the filter frequency response, we can
see that if difference between ωi and ωo is high, terms are very attenuated;
if we consider similar values of ωi and ωo, filter let more contributes pass. vc
is simply a sine wave filtered with F : moving to high frequencies respect to
ωor, we have more attenuation; with lower difference, lower attenuation!

This, was the open gain behaviour; now, let’s close the loop, and try
to understand what happens with closed loop: we suppose that the voltage
controlled oscillator (VCO) characteristic is linear, so that with a vc change
we have a ωo change proportional to the vc change; if VCR = 0, and vc = VCR
there is no change of frequency respect to the rest point.
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Let’s apply a ωi,1 that has a very high difference respect to the ωor: in
our system we will have a vc term, due to this ωi,1, very attenuated, and
so that can not correct the VCO output in order to modify ωor; moving to
right with the ωi, vc increases its amplitude, because the filter’s attenuation
becomes lower and let more voltage pass through; when there is an inter-
ception between the VCO linear characteristic and the vc, we have that vc
is high enough to modify the VCO output frequency, so to correct the ωo
to ωi, obtaining the lock condition. From here, all becomes easier: we are
moving with only DC terms, because we are only correcting with low values
the ωo respect to new values of ωi, and we are maintaining the lock condition;
we are only working with DC values of vc, now. Now, let’s increase ωi, and
go over the symmetric filter response; do we lose the lock condition? The
answer is no! We are already moving on the VCO characteristic and using
only little DC terms to obtain ωo variations, so keeping our condition safe!
The critical point, after them we don’t have any locking, is the interception
between VCO linear characteristic and F (0) gain: after this point, we have
to give to the VCO a voltage higher than the one that filter can let pass
through itself, because of the DC gain; after this point we will lose the lock
condition, and only going back until the interception we will regain it! We
can define two frequency ranges:

• Capture range: from unlock to lock condition: if we have no lock condi-
tion and we go through the interception of the filter frequency response
and the VCO characteristic, we obtain the lock condition; the range
of values (symmetric) where we can obtain the lock condition without
having it before, is known as capture range.

• Lock range: with having lock condition, there is a wider range of fre-
quencies that can guarantee the maintaining of the lock condition; the
set of this frequencies is known as lock range.
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Now we can also understand why we need a low-pass filter as loop filter:
when loop provides corrections to the VCO, corrections are DC values; the
filter must so be a low-pass, because we need to have DC and some other
harmonics; the wideness of the frequency response tells us informations about
the transient: if we have many harmonics, we will have a more disturbed
transient; moreover, if we filter too much harmonics, we risk to obtain a
too-insensible PLL, that can not react to fast frequency shifts.

Now, what happens to this characteristic, known also as butterfly char-
acteristic (so named due to its shape), if we change some parameters, like
the pole position (or it’s τp), the Kd or the Ko ? Well, let’s observe it!

• If we change Ko, we change the slope of the line, so both the capture
range and the lock range, that are both related to the slope of the VCO
linear characteristic;

• With changing τp, so the frequency response of the filter, we change only
the capture range; changing τp in fact we don’t change the DC gain,
that provides, by intersection with the VCO characteristic, the lock
range, so only the capture range is sensible to this type of variations;

• With changing Vi, Vo or Km (so, with changing Kd), we change both
capture and lock range, because we act on the y-axis scale, rescaling
so the vertical variable; this changes both DC gain of the filter and
intersection between the filter response and the VCO characteristic.
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4.3.3 Digital phase detectors

We ended the study of the analog phase detector, realized with an analog
multiplier; now we will study some way to realize digital phase detectors,
now the most used in PLL systems.

The first step is define the phase shift also with digital signals: until this
subsection we studied monochromatic signals, so with only one frequency;
now we must study digital signals, so signals similar to square waves, with
only two levels. In order to define phase in this case, we have to study the
total period T of this signal, and the time when it remains to the upper state;
it will be defined as τ ; τ is so related to the phase shift in the time domain; in
order to make the phase shift definition similar to the old one, we introduce
a de-normalization of 2π, obtaining:

ϑe ,
τ

T
· 2π

There will be a problem, like before: with τ > T , we will have more than
a complete phase rotation, so it will be recognized as something more than 0
(because circuits can not recognize/discriminate more than 2π phase shift).
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XOR phase detector

The first logic system we can use in order to realize a digital phase detector
is just a XOR gate: XOR, or exclusive-OR, produce 1 value on the output
when inputs are different, and 0 value when inputs are the same:

What we can do is consider the equivalent DC component, proportional to
the amplitude of the 1 area; area is rectangular, where the height is constant
(1), and the width depends on τ , so is very related to the phase shift. When
ϑe = π, so τ is equal to 0,5 , there is the maximum value that the XOR gate
can measure:

This is the characteristic of the XOR gate respect to phase shift measure-
ments: when ϑe increases, vd (the DC component derived by the rectangular
areas, depending by τ) increases, since it becomes 1 for ϑe = π; after that
situation, if we increase ϑe the situation becomes the opposite: our system
sees that the DC component decreases, so the vd; this type of phase detector
consider only the lesser of the two delays.

The triangular form of this characteristic is quite good: we know that a
phase detector must be this characteristic:

vd = Kdϑe

Due to the XOR’s linear behaviour of vd respect to ϑe, Kd is exactly the
slope of our triangle; what we can do now is evaluate Kd as ratio between vd
and ϑe, in a well known point; we know that in ϑe = π vd is VH , where VH is
a parameter depending by the technology of the XOR gate, so:

Kd =
VH
π
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Now, let’s try to find some relations and differences between the two
characteristics, of analog and digital phase detectors:

First relation: both the characteristics are periodic; a difference is that
with ϑe = π, the analog has negative slope, so positive feedback; the positive
slope zone of the analog phase detector is narrower as the other. Another
important difference regards the operating point of the circuits, so the rest
point, the work point that circuits has if there is no signal in. For the analog
phase detector, it is ϑe = 0: this is the best point in order to obtain, with
both increase and decrease of ϑe, increase and decrease of the vd voltage, so
the best situation for a signal; we can not have that also in the digital XOR
phase detector, because ϑe = 0 is not a point where vd increases or decreases
for increases or decreases of ϑe; the rest point for this circuit will be ϑe = π

2
,

so a quarter of the total period of the characteristic.
Let’s pay attention to one thing: the ϑe phase shift definition is defined,

for analog systems, from the sin/cos relation, so considering on the input
a sine wave, on the output a cosine wave. The π

2
shift on the operating

point can be explained with this convention: sine on the input, cosine on the
output; for the digital phase detector (with XOR), there is a π

2
shift, because

of the obligated choice of the operating point.

Sequential digital phase detectors

Until now, we analysed only signals like square waves, with 50 % duty cycle,
in order to measure its phase error; another possibility is study digital signals,
with no 50 % duty cycle.
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Can this be studied with a XOR gate? No: the XOR will work as logic
gate, but it can not measure the phase shift: if we move the vo position
respect to the previous one, the DC component does not change, because
this type of detector can not determine pulse (or not-50% duty cycle) phase
shifts. We need something different, something sequential, like a SR-flip-flop
(set-reset flip-flop): it will obtain something like this:

The DC component is proportional to the pulse, measured with sampling
the pulses; pulses change the state of the flip-flop and make it have a DC
value; every pulse make the flip flop begin and end it’s output: if pulses are
very close the output DC will be very small, and if they are far, very shifted,
DC will be greater.

Now DC depends on shift, until we reach 2π; when we go over ϑe = 2π,
shift can not be recognize as greater of 2π, and the characteristic starts over
from 0; the good fact is that this phase detector can handle a full period of
2π, without changing its slope, so without risks of change the polarity. This
can be good or bad: we lose the negative slope zone, that can be useful if we
don’t know a priori the polarity of the signal, and risk to make unstable the
system. Rest point now can be put in ϑe = π, in order to put it in the center
of the characteristic; if we go over 2π, we jump down and lose lock condition.

Problems for this type of circuit: pulses must be narrow and separate,
because if there is overlapping between the pulses in the two inputs, we can
have problems: depending on the technology of the flip-flops, they can or
can not recognize the real phase shift, and propose different DC values in
output. This teaches us that there is no universal phase detector, so
that a good circuit that can realize phase shift measures in every condition
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does not exists.
For overlapped signals, there are two ways:

• We can try to change the signal in something with only pulses, by
deriving; in order to have 50% duty cycle, for example, we can use
frequency dividers, that change period and phase shift, but maintains
constant the relations between they!

• We can use special phase detectors that can operate directly on these
signals, using fine state machines that can predict the signal’s problems
and, if they are edge sensitive, resolve them.

Often we use charge pump phase detectors:

There are two inputs, so vc is the voltage already filtered; if there is
only A closed, the capacitor gets charged; if only B is open, the capacitor
gets discharged; if the two switches are both open or closed, we can imagine
that charge in the capacitor will not change. This circuit works as an ideal
integrator: if phase difference remains the same, gain increases, so like the
circuit with the op-amp.

4.4 Signal synthesizers

Now, we will introduce a PLL description as fundamental block for frequency
synthesis; this is one of the possible application of the PLL (like the filtering
one, previously introduced); this function can be realized, simply by intro-
ducing on the input signal and on the output pin two dividers, respectively
by M and N :
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We have that fi = fo; if we consider that:

fi =
fr
M

fo =
fu
N

We have that:

fr
M

=
fu
N

=⇒ fu =
M

N
fi

If there are pins that can take fu, we obtain a frequency synthesizer. This
is a very stable and precise frequency generator, so we can obtain a very high
frequency range.

Let’s consider this block diagram of a PLL system:

As we can see, there are many blocks: two phase comparators, one realized
with a XOR gate and one with a charge pump, closed on a tri-state output;
out of the tri-state we have to introduce the filter block, realized for example
with a RC cell; out of this there is a source follower: it can be useful in
order to use probes, that can change the load out of the tri-state circuit; if
we have an impedance decoupler like this, we can feel free to use every probe
without problems. This system must work with digital and analog signals;
in order to treat both of the types of signals, there are input buffers, that
can transform the sine wave (most used analog signal) into a square wave,
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simply with a voltage comparator; this block is not simple to realize, because
the threshold must be selected in order to be positive, in the middle value of
the signal; this is difficult, with integrated circuits, because cheap integrating
processes cannot guarantee precision; a trick which guarantees that DC level
is equal to the threshold capacitor is to use many inverters like these, in chain
(obviously, in even number, in order to maintain the original polarity of the
signal).

VT is define with another inverter that must be special : it can be con-
nected in this way:

If we put this VT resistor and this threshold inverter, with decoupling
capacitor on the input, we can obtain the VT simply with connecting input
to output of the inverter; if the inverter is well define, the only possible
operating point that it can have is the one previously plotted.

All these inverters must be equal, in the same thermal state and with
same parameters; they must be well designed, because the problem of the
CMOS inverters is that, if they conduct, there can be a big current on the
channels, current that can destroy the devices; if the inverters are designed
in order to have low currents, Joule effect will not destroy anything.

4.4.1 Voltage Controlled Oscillators

The VCO circuit is based on this principle:
This is the general way to realize square wave generators: due to constant

current, there is a line (capacitor work as integrator, but it integrate just a
constant, so the output voltage will be a line); when we reach the threshold,
the comparator will invert the voltage of the capacitor; current begins to
re-recharge the capacitor, and so go on, starting over. The frequency of this
process depends on C, I, VR: by changing C or I we change the slope, and
by changing VR we change the inverting point of the comparator. A circuit
suited for integrated circuit design can be the following one:
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Instead of the single comparator there are two, and the output is a flip-
flop; when the threshold is reached, switches switch, and capacitor changes
it’s polarity; switches are controlled by the output, so by the flip-flop. The
current is generated by a current mirror, realized in CMOS technology: it
creates a replica of the current on the control MOS. Current is realized as
sum of two contributes: one, depending on a resistance directly connected to
VDD, so constant (by keeping constant R2 and VDD), and the one on R1, that
depends on VC voltage; from VC we can change the circuit’s I1 current, and
since we change I1 we change I, so the replica, so the slope of the triangle,
and the frequency of the output signal; the current on R2 sets only an offset:

R2 controls the starting point of the characteristic; as we apply VC , there
is also I1, so a linear increase of the frequency. As we increase I1, capacitor
in fact is recharged quickly and frequency becomes higher, linearly! It will
increase, until there is some voltage on the current mirror, keeping on the
MOS.

In order to introduce more details about VCOs, let’s start again, from
the functional description of the block: given a control voltage vc, with DC
and variable components, out of this block there is a square wave with a
fo frequency; Ko is a proportional term that creates a relation between the
change of angular frequency and the control voltage input:

Ko =
∆ωo
∆vc
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It can generally be a non-linear relation, but we can consider only a small
variation zone, and approximate to a line the characteristic; we can handle,
with this system, both increase and decrease of frequency, identifying an
opportune VCR voltage control rest point and its for output frequency, from
where we will move by changing vc. Ko can quantify frequency change for
vc change, so it must be chosen well, depending on the applications we want
to realize. Let’s remark the following idea: the frequency range of changing
must be compared with the central frequency: setting the VCO change
from 1 kHz to 10 kHz is very different that setting it from 100 MHz to 101
MHz: even if absolute range between the second pair of bounds is very wider
respect to the first one, we have to remark that frequency change is compared
with center frequency, so the relative widest range is the first one (and we
are interested about the relative range, not the absolute!); another parameter
important, when we are about to setting a VCO, is the frequency zone where
we want to work: we can need small frequency change around 1 kHz, or wide
ranges around 10 GHz; this two are very different conditions, and need very
different realizations. When we work in low frequency ranges, like from 100
kHz to few MHz, we can use very easy devices, like op-amps; with 10 GHz,
op-amps are not working. Since op-amps circuits are easy to realize, let’s
focus on a high frequency realizations based on something we already know:
one way to realize VCOs is based on oscillators, with tuned circuits:

Realizing a positive feedback circuit based on this circuit, we can realize
an oscillator; how can we change the resonance frequency? Well, a way
is using varistors: with changing the voltage (in this case, the vc control
voltage) we can change the capacitance of the device, changing the depletion
area; we need to isolate DC and radiofrequency, in order to modify varistor
capacitance without touching any signal; in lock condition vc does not change,
so we can maintain constant also the output frequency. This realization is
the most common used in consumer devices, like TVs or cellular phones.

If we want to realize a VCO in radiofrequency with a very wide range, we
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need to use an heterodyne approach: multiplicating with a cosine with the
right frequency we can obtain sum and difference beats, so generate terms
with GHz frequencies.

We use, in order to have small capacitances, charge and discharge capac-
itor circuits with fixed sources or resistances; in the VCO there is something
like this:

With the same circuit we can change frequency by changing the threshold
of the components, instead of the current; there are circuits that can change
the threshold: if capacitor is charged and discharged through a resistor in-
stead of a fixed current source, we have a similar effect, with an exponential
shape: current is not constant anymore, so there is a behaviour like this.

4.4.2 Fractional synthesizers

In order to introduce this new type of synthesizer, we have to introduce or
remember the definition of resolution: let’s consider the following scheme:

Supposing that out VCO works in 400 kHz range, and N = 4, if we have
fixed reference frequency equal to 100 kHz, and we can only change N , what
is the resolution of the output frequency? Well, if N = 3, output frequency
will be equal to 300 kHz, if N = 5 output frequency will be equal to 500 kHz,
so we can say that resolution, so the minimum change that we can obtain
by changing the N parameter, is 100 kHz. Our question is: how to obtain a
well define resolution, with a block diagram like this (or something similar) ?
For example: if we ask a 1 kHz resolution, in order to obtain 401, 402, 403...
kHz as possible values, what can we do?
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If we want this resolution keeping the same reference frequency, we have
to modify the circuit, introducing in the input a divider by 100; 100 means
7 bit (like 128), so we have to use 7 flip flops. With this circuit, if M = 100,
N should be equal to 401, if we want 401 kHz as output frequency, and so
on.

If we want a better resolution, can we use this circuit? For example, if
we want a 1 Hz resolution, can we use this circuit? Well, there is a problem:
every time we divide the input frequency with a flip-flop chain, we need
to change the loop filter characteristics; have very precise dividers is not a
problem, because they are very simple to realize (we have only to use very
long chains of flip-flops), but we must remember that the loop gain filter
must be realized in order to have the cut-off frequency equal to the input
frequency, divider by 10; if we introduce a divider that reduces to 1 Hz the
input frequency, we must use a low-pass filter with 0,1 Hz cut-off frequency,
and this is impossible: the cut-off frequency cuts almost every variation term,
so vc is very similar to a DC; if vc can not change, the PLL can not lock the
signal, so it becomes useless (or very hard to use), because variations of the
VCO are too slow.

How to get high resolution with fast response? This can be an idea:

We use a divider which can change the ratio, and the change is controlled
by another digital circuit; there is a periodic change of the division factor
N , controlled by this circuit; this circuit creates a relation between the duty
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cycle D and the division factor N , in order to permits the change from N to
N+1. Considering the average frequency, we will obtain a value of frequency
that can be between fu divided by N and fu divided by N + 1; it depends
on the duty cycle measured by the additional circuit: the relation between
the average fo and fu is:

fu = fo ·
N · (N + 1)

D +N

This means that if N is 0 we divide for N+1, so we increase the value of N
of 1, and if D is 1 we maintain the same N ; depending on D, evaluated on the
average frequency, we can increase (or can not increase) to the following value
of N . The filter does not have problems, because the division part is realized
after the filter: the division term in the input of the system is designed in
order to don’t introduce critical divisions, so, with this technology, we have
resolved the previous problem.

4.4.3 Direct digital synthesis

Let’s consider the following situation:

If we consider only some of this samples, like one sample every two, and
we put they in a sequence with the same sampling rate (like if they were one
after the other), we obtain something very interesting:
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From the beginning frequency, we obtain a signal with a frequency equal
to the double of the previous one.

The idea is: if we have a list of samples of a signal, for example of 100
samples, if we read this table and take out all the values with an fck frequency,
we will have a signal with frequency equal to:

fck
100

Now, if we skip half of the values, taking only one every two of them, we
have:

fck
50

So a frequency equal to the double of the previous one, because we com-
plete one period in half of the time.

This is only an idea, but it can be realized with any signal shape (this was
a sawtooth, but we can use sine waves or every kind of shape and behaviour).
Obviously, if we take one every three samples, we have a frequency equal to
the triple of the previous one, and so go on. This technique is very used in
many applications, like in sound processing or music synthesizers: if we need
to increase the sound velocity, we can use this technique, in order to increase
reproduction frequency, and generate sounds with different frequencies, just
by changing the step of scanning.
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To realize this idea, we can use a structure like the following one:

In order to access to the memory we need a pointer, that must be gen-
erated with a circuit called phase accumulator : there is an adder with a
register, and for every clock we add something to the register, in order to
obtain, out of it, a new address that points to a memory block. Every ∆ϕ
corresponds to a step to the next sample; out of the phase accumulator there
is so a memory that contains the samples of the wave that we want to rep-
resent: a sine wave, a triangular wave, a sawtooth wave, or something else;
with a DAC we move from the digital domain to the analog domain, and
then introduce a low-pass filter in order to erase all the replicas generated
from the sampling process.

This technique can be used in order to realize the three more notorious
modulations:

• In order to realize amplitude modulation, we can simply introduce,
out of the phase accumulator, a multiplier; by multiplying the samples
amplitudes, we obtain exactly what we want, so a modulation of the
amplitude of the output signal;

Multiplying must be an easy operation, so we choose to multiply for
simple factors, like the powers of 2, in order to realize products simply
by shifting the values of the samples of a position.
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• Frequency modulation can be realized by changing the scan step: if the
memory out of the phase accumulator contains the sine samples, if we
change the scan step we take different samples, increasing or decreasing
the frequency of the sine, obtaining the FM!

• Phase modulation can be realized simply by adding a constant to the
phase detector: phase, respect to a sine wave, is simply a time-domain
shift, so by adding a constant we change the first sample we consider,
and obtain a shift of the entire sine wave (by taking different samples
respect to the expected ones).

Until now, we considered only ideal situations; now, we need to consider
the parameters which can or can not permit to realize the idea presented.
We have, as already said, all the samples of the basic waveform in a memory;
we assume that, in this memory, there are K samples, and a scan frequency
of S; if there is , for every scan, a TS time needed in order to realize scanning,
we have that the equivalent period of the wave is:

To = TS ·
K

S

In frequency:

Fo = FS ·
S

K

The output frequency depends on the scan frequency S (depending on
phase step, that we can change); resolution depends on S, that is a digital
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number; the minimum change that we can observe is one LSB (of S), so
the least significant bit of every output; 1 LSB is an absolute value: the
weight of one LSB depends on how many samples are in memory; in order to
appreciate small changes, we need many samples; many samples means that
the phase accumulator must generate addresses with many bits; we can find
systems with addresses with up to 32 bits, but often only some of this are
used; for example, only 12 of 32 bits can be used to realize address, and so
will go into the memory (into the table); if we have many samples, we have
more resolution.

Resolution does not only depends on the number of samples memorized
into the table: there are many other errors, like:

• Aliasing: we need that the spectrum of the signals satisfies Nyquist’s
criteria, so that sampling process is realized with a high enough fre-
quency. It can be removed by filtering, before starting the sampling
process.

• Quantization: there are errors related to the quantization process, as
we will study later, that make resolution become worst. As we will see,
quantization error depends on the number of bit of the sampler.

• Distorsion: the table of samples is discrete, so does not describe every
phenomena; we have only approximations, so there can be distorsion,
that can be quantified by studying the spectrum of the output signal.

Numeric Controlled Oscillator

There is one more special application about DDS: we have seen that with
DDS we can synthesize many signals but... we did not write anything about
square waves; there is one good reason: obviously, with DDS we can syn-
thesize square waves, but we don’t need any memory: just one bit! In fact,
a square wave can be thought as a binary number that can assume 1 or 0
values. If we want a square wave, so, we need to take only the MSB of the
entire number, obtaining an NCO: an oscillator (generator of square waves)
that depends only on a number.

4.5 PLL as filter

As we already studied, PLL can be seen as a very good filter; now, we want
to study the parameters that can describe a PLL as a filter; we said that, if
we set correctly the PLL, we can obtain a band-pass filter with a very narrow
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band; the width of the bandwidth of the PLL filter depends, as we will see
later, on the bandwidth of the loop filter.

In order to analyse this effect we will consider an input with noise. Noise
rejection will be the fundamental study of this section: the effect of noise is
related to the bandwidth of the filter, because if we have a wideband noise
and a band-pass filtering system, we have a noise contribute whose width
depends on the characteristics of the filtering device.

If we can find a method to evaluate the noise parameters (amplitude)
and the output noise power, we could find the equivalent bandwidth of our
system, seen as a filter. This is not enough: we want to compute the value
of the power of vd, with only noise, in order to obtain a relation between an
only-input noise and it’s output, over the phase detector; we need relations
between noise and phase, because we know that:

ϑo = H(s) · ϑi
We introduce an equivalent phase noise and evaluate the equivalent band-

width; this will be done by analysing sine wave signals, so with an ana-
log phase detector, considering for hypothesis lock condition satisfied, with
f = for as the resting point of the system. Another hypothesis: before the
input pin of the PLL we consider a band-pass filter, that limits the incoming
noise; signal has a limited bandwidth, so our filter will have bandwidth Bi,
centred on for.

Finally, last hypothesis: we consider the noise value in phase and quadra-
ture representation:

n(t) = nc(t) cos(ωot) + ns(t) sin(ωot)

So, first step: in order to evaluate the power after the phase detector,
we have to consider an input with only noise; we know that an analog phase
detector is simply a multiplier, so the output of the multiplication will contain
the vo signal, and the noise contribute, multiplied by Km:

Vdn(t) = KmVo cos(ωot) [nc(t) cos(ωot) + ns(t) sin(ωot)]
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By multiplying the cosines and the sine with the cosine, we obtain the
sum and difference beats; obviously, only the difference beat will be useful,
because the sum one is going to be filtered; we have something like:

Vdn(t) =
KmVo

2
[nc(t) cos(ϑo(t))− ns(t) sin(ϑo(t))]

Now, we are interested on power; power can be evaluated as the square
of the mean of this signal; we have:

< V 2
dn(t) >=<

(
KmVo

2
[nc(t) cos(ϑo(t))− ns(t) sin(ϑo(t))]

)2

>=

=< n2
c(t) cos2(ϑo(t)) > −

+2 < n2
c(t)n

2
s(t) >< cos(ϑo(t)) >< sin(ϑo(t)) > + < ns(t) >

2 sin2(ϑo(t)) >

We consider, as hypothesis, the fact that the two statistic variables are
independent, so we can separate them from the sine waves, and observe that
the mean value of a sine/cosine is 0; so, the middle term get erased; by
considering n(t) = nc(t) = ns(t) (every variable with the same distribution),
we have that:

< n2(t) > ·
(
cos2(ϑo(t)) + sin2(ϑo(t))

]
=< n2(t) >

So:

< V 2
dn >=

(
KmVo

2

)2

< n2(t) >

End of the first step: we obtained an average value of the vd noise signal.
Second step: let’s consider a sine signal with phase noise, where for phase

noise we mean that there is a casual shift in the signal:

vi(t) = Vi sin(ωi + ϑin(t))

This model can be useful in order to relate the characteristic of the phase
detector with the formula previously obtained; we are supposing, like already
written, that lock condition is satisfied, so that ωi = ωo; both ϑin(t) and ϑo(t)
are present; VCO is controlled by the voltage out of the filter, so it can change
frequency slowly; this hypothesis is very useful, because we can imagine that
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ϑo changes very slowly respect to ϑin(t), so we consider ϑo as the reference
of the phase, respect to ϑin(t), and we evaluate the other, considering so:

vi(t) = Vi sin(ϑin(t))

We have seen that, for small phase differences, we can approximate all
with only ϑin(t) (Taylor expansion):

Vdn(t) ' KmVoVi
2

ϑin(t)

Now we can compute the square average of this function, and compare
with the one previously obtained:(

KmVoVi
2

)2

< ϑ2
in(t) >=

(
KmVo

2

)2

< n2(t) >

Let’s remark that n(t) is a voltage, so this equation is dimensionally
correct. We have that:

< ϑ2
in(t) >=

< n2(t) >

V 2
i

This is an expression that can quantify the equivalent phase noise. Now,
we know that the RMS (root mean square) value of Vi is Vi√

2
, so:

PS =
V 2
i

2

So, considering that noise power is the square average of the noise signal:

ϑ2
in(t) =

Pn
2Ps

Now: given the noise power, the spectral density of noise is related! If we
know the spectral density of noise Ni (normally given as parameter of the
transmission channel), and the noise power, we can compute the equivalent
bandwidth Bi:

Ni =
< n2(t) >

Bi

We can introduce something similar to this idea, for the equivalent phase
noise:

Φ =
< ϑ2

in(t) >
Bi
2
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Warning: the bandwidth of the ϑ2
in(t) it’s half of the original Bi; this,

because we multiply the ϑin(t) signal for a signal with the same frequency
(in the phase detector), so we bring it back to the base band; here, useful
bandwidth is only half of the total bandwidth (out of the base band); by
substituting the first formula in the second one, we can obtain:

Φ = 2
Ni

V 2
i

Here we know almost everything: Ni is known, Vi is known: the spectral
density of equivalent phase noise can be easily calculated, with the last for-
mula. Why do we need this formula? Well, from Electrical Communications,
we know how to calculate the output power of a signal, as the integral on the
equivalent bandwidth of the signal of the spectral power density, multiplied
by the square absolute value of the transfer function:

ϑ2
in(t) =

∫ Bi
2

0

Φ · |H(j2πf)|2 df

This is the output noise power; but... We already know it’s value! So, we
can say that:

Po = Φ ·
∫ Bi

2

0

|H(j2πf)|2 df

This is not good: we can not put in relations this functions with the PLL
parameters, because these parameters depends on Bi, that depends on the
band-pass filter put before the PLL block; we can introduce another (good)
hypothesis: we can suppose that |H(j2πf)| is zero (or negligible) above Bi

2
;

this is an easy hypothesis to satisfy, because we can think that PLL must
filter more than the input band-pass filter, because introducing a wide filter
after a narrow filter is a non-sense. We can say that parameters are equal to
∞, so that:
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Po = Φ ·
∫ ∞

0

|H(j2πf)|2 df

Now this is the equivalent bandwidth of the PLL! In fact, Φ is the spectral
power density, Po is a power, so dimensionally the integral is a spectrum
range: the spectrum range where we consider the filtering properties of the
PLL!

H(j2πf) depends on the loop filter, and on the other PLL parameters
(like Ko, Km). If we have wide bandwidth, there is more noise; with narrow
bandwidth, there is less noise, but low frequency response, and the PLL has a
narrower capture range (in order to lock a signal it must be have a frequency
nearer to the ωor).

Final consideration: exists a formula that can put in relation the SNR of
the input signal, and the SNR of the output signal:

SNRo = SNRi ·
2Bi

BL

Where BL is the just defined equivalent bandwidth, Bi is the bandwidth
of the filter, and the other are the input and output signal to noise ratios.
This formula is strange: obviously, if we have a narrow BL we reduce noise, so
we increase the output SNR; if we increase Bi, theoretically we increase the
output SNR; it does not make sense: if we get wider the filter’s bandwidth,
we let more noise come in; there is not a detail in this formula: the input
SNR depends on Bi, so, if from one side it seems that output SNR increases,
this is not true because the input SNR decreases.

4.6 PLL as frequency demodulator

Can we use a PLL as frequency demodulator? Well... the answer is yes! It
can be used as demodulator for FM and AM, but also for digital modulations;
let’s start from the FM:
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If we remember the butterfly characteristic, changing frequency we have
different vi, so we can use this characteristic to understand how frequency
can be translated to voltage.

There are other techniques to do that: given a filter with cut-off frequency
nearby, when we change frequency we change amplitude, so we convert a
frequency modulation into an amplitude modulation: as we change frequency,
the frequency response of the filter will change amplitude!

4.6.1 Coherent demodulation

The simplest modulation we know is the AM (amplitude modulation): the
information, for this type of modulation, is hidden into the amplitude chang-
ing of the signal. The simplest way (but also the worst one) to demodulate
AM signals is by using a diode, in series to a low-pass filter:

This is known as envelope demodulator.
There are more elaborated techniques, that use PLL properties to obtain

a better result: in frequency domain we know that an amplitude-modulated
signal is a signal shifted for a ωc frequency; if we can measure/obtain in some
way ωc, then multiply this signal for a signal with the same frequency, as we
well-know we can shift the signal in base-band, in order to obtain a simple
signal to analyse/process. How can we obtain ωc ? Well... from a PLL!
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We introduce a band-pass filter, in order to remove noise; if we obtain ωc
with a PLL, we shift its output of π

2
, so we multiply the two sine terms, in

order to have a base-band signal, with a very high precision. In base-band, we
can apply another low-pass filter, that cleans the other parts of the spectrum,
maintaining only the useful ones. The π

2
phase shift is very important: from

the multiplier we can get Km, Vi and Vo; we know Km and Vo, and we
want to obtain informations about the input signal, Vi, which comes from
an AM receiver; if we multiply sine wave by cosine wave (remember that a
PLL produces, out if it, cosine waves), we introduce a DC component equal
to 0, so useless in order to obtain Vi; with the phase shift of 90◦, we can
transform the cosine out of the PLL in sine, and get a DC component after
the multiplier, so the Vi information.

There is a problem, about this observation: output generally does not
depend only on the input amplitude of the signal (as we expect, in an AM
demodulator), but only on frequency changes: when PLL must lock the
signal, there is a shift between the input carrier frequency and the VCO one;
this shift will not give an exact product of two cosines, but a product of a
cosine and something different, that is less of the expected value. There are
two ways to reduce this problem:

• Increase the loop gain of the system, reducing the problem: ϑe in fact
depends on the amplitude of the loop gain, and if we increase it we re-
duce the problem; this solution can be realized, but it isn’t very good,
because, as we know from the Automatic Controls theory, increasing
the loop gain in a feedback system increase the bandwidth of the sys-
tem, so the noise components that can disturb the PLL. How much the
feedback noise rejection properties and the bandwidth increase change
the sensitivity of the system respect to noise can be computed only
with a detailed analysis.

• Use an I/Q demodulator (phase and quadrature demodulator): by tak-
ing both phase and quadrature components of a signal, we consider the
modulus instead of the single parameter, reducing the problem.

This second observation is interesting, in order to introduce another ap-
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plication of the PLL:

By realizing this schematic, multiplying by cosine to obtain phase compo-
nent and by sine to obtain quadrature component, then adding, output will
depend only on modulus, as already written. An additional note: adding
and other operations can be handled in a good way with DSP:

If we use a schematic like this one, we can realize the difficult operations
in a processor, that can handle they in a simpler way; we can do something
more radical, introducing the A/D conversion before this blocks, but we don’t
do it in order to have a system that can be used also with high frequency
signals.

Recovering phase and quadrature components can be useful in order to
realize a QAM modulation, so a modulation that handles both phase and
quadrature components, to realize a digital modulation.

PLL systems can be realized with analog electronics, with digital elec-
tronics or with software; depending on the application (obviously, near an
antenna we can’t use software realizations, unless we have very good radiofre-
quency filters and samplers!), a PLL can be implemented on a core, in wired
logic, by software; the only important thing to remark if we don’t want to
use analog electronics is: sample: after the sampling process, by realizing a

104



digital control loop, we can resolve every other problem.

4.6.2 Tone decoders

An application for the PLL is the tone decoder. Tone decoders are usually
integrated circuits that contain analog PLL systems setted by coherent de-
modulators; the VCO output for these systems is a square wave, that goes
back in the loop multiplied by an analog multiplier (that realizes the phase
detector block). These systems were used for phones, in order to decode
tones for controls (like telephone numbers).

There are many specifics about this systems; let’s study they one by one.

Bandwidth

Generally, these devices, in order to decode a well defined tone, work only
on a frequency line, or in a very narrow band around it. Usually, bandwidth
is equal to the 15 % of the center frequency, around it, in order to avoid
decoding of unwanted tones; noise is a problem, so reducing bandwidth will
be a very useful way to reduce this types of errors.

Input amplitude dynamics

There are specifications about the input voltage amplitudes, in order to spe-
cific which are the minimum and maximum values that can be recognized as
valid tones. These limits are useful, because if signal amplitude is too low, it
becomes similar to noise, so noise becomes very important respect to signal.
There are minimum and maximum absolute input levels that guarantee to
recognize a tone in order to avoid noise problems and saturation problems;
these specifics are similar to the VIL/VOL/VIH/VOH specifics known for logic
gates: by introducing these bounds, we are quite sure that the device will
recognize the tone signal.

Noise and interference rejection

There are other specifications about noise and interference terms: PLL sys-
tems have a very good immunity to noise or interference terms; for noise
we mean the usual additive stochastic process that changes the equivalent
signal; for interference term, we mean a signal with very great amplitude out
of the band of the signal, that can decrease the performances of the system.

These circuit can handle these specifications (we are talking about the
NE567 family, for example):
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• Greatest simultaneous out-band signal to in-band signal ratio of 6 dB
: this means that if we have an interference signal term out of the
bandwidth with power equal to 4 times the power of the good signal,
the system can recognize and reject it;

• Minimum input signal to wide-band noise ratio of - 6 dB : this means
that if there is a wide-band noise term with power equal to 4 times the
power of the signal, the system can recognize and reject it.

Capture and lock ranges

As already known from the previous theory, there exist for the PLL-based
systems a capture range and a lock range; these terms depend on the ampli-
tude of the input signal. There are two fundamental regions:

• Linear region: capture range depends on Vi, so by changing the input
signal will change the capture range for the signals;

• Saturation region: if the Vi parameter is too high, system will work in
saturation zone, that means that changing of Vi (over the lower bound
that separates linear and saturation regions) will not determine changes
of the capture range.

I-C fixed τ VCO

In order to end this subsection, will be presented a VCO implementation
based on fixing the τ = RC time constant.
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Here we don’t change the time constant, because frequency is changed
by changing the threshold; threshold is changed with the Vc control voltage:
the voltage divider changes the amplitude of the signals connected to the
operational amplifiers inputs, and realize the threshold change. There is
another version of this circuit:

Here there is a third threshold, that introduces the possibility of a sec-
ond output, which has a phase shift respect to the other; if resistances are
equal, there is a 1

3
exact voltage division for each resistance, and the third

threshold will be exactly in the middle of the other two’s distance. With this
hypothesis, the output signal will be shifted by 90◦: from every threshold to
the third one there is the same distance, so the signal derived by the third
op-amp will start and end with a delay correspondent to π

2
respect to the

original one.
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Chapter 5

Analog to Digital and Digital
to Analog conversion

5.1 Introduction

Like already done, in this chapter we will focus first on a structured de-
scription of A/D and D/A converters, in order to understand how they must
work, then we will analyse circuit implementations and other stuff; in other
words, we will focus first on a structured description, looking at parameters
we must know and how we can modify it in order to process information,
then realizing they with electronics.

There are two fundamental applications for A/D and D/A converters:

• Radiofrequency systems, like radio (near antennas) or something simi-
lar (systems that must work with very high frequency signals);

• Audio applications (which work with tens of kHz, so low frequencies).

We are going to look to A/D and D/A conversion in radio architectures,
in many situations: out of the IF, or before it (hard to realize).

These are two situations: the left one, which is simple (working after
the IF conversion means working after a frequency rescaling), and the right
one, which is the hardest situation: working after the antenna filter is very
hard, because there is many noise, and converters must work with very high
frequencies (and low amplitude signals).
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Our systems must be linear: the worst non-linearity effect is intermod-
ulation, so a set of terms that can introduce interference in our signal, and
can’t be filtrated; if A/D has an intrinsic non-linear transfer function, con-
version introduces intermodulation, and we have many problems that cannot
be resolved.

Some refresh, about analog and digital domains:

A digital signal is just a sequence of numbers, that can be represented
geometrically with a set of point, assuming various amplitudes. There is a
relation between the voltage values in the input of the converter and the
numbers out of it; time domain is discrete, so we know informations only
about these points. Input information can variate with continuity, on an
interval (bounded): for every time value the analog signal can have every
value inside the interval; output information is numeric, digital, so it can
represent only some values: there is an approximation at this level, so a loss
of information; the two steps, considering the discrete time characteriza-
tion and the discrete amplitudes characterization are realized with two
processes: sampling and quantization.

5.1.1 Sampling

Sampling can be described, in the time domain, as the multiplication of
the analog signal for a sequences of pulses (Dirac deltas); we can define a
sampling frequency FS as:

FS =
1

TS

Where TS is the distance (considered equal from every point to the
next/previous one), in time domain.

What are we losing, with this processing? Let’s see: as known from
the Signal Processing Theory, using the Discrete Fourier Transform, product
becomes convolution:
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x(t)·
+∞∑

n=−∞

δ(t−nTS)
F−→ X(f)⊗

+∞∑
n=−∞

δ(f−nFS) =
+∞∑

n=−∞

δ(t−nTS)X(f−nFS)

There is the base-band spectrum, and other aliases, shifted in the spectral
domain:

Until now, there is no loss: this process creates replicas of the original
spectrum, without introducing problems. If we want to get back the original
signal, we can simply put a low-pass filter which removes the aliases and
keeps only the interesting part of it.

There are two bad situations: the first one is about aliasing; in order
to sample correctly, we must satisfy the Nyquist theorem, so sample with a
frequency equal or higher to the double of the original spectrum bandwidth;
if we don’t respect this criteria, in fact, we obtain something bad:
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Aliasing creates harmonic contributes with frequency lower than the origi-
nal spectrum one; this means that these harmonics cannot be filtered, because
filtering means erase the good signal; let’s remark that these are examples
based on very simple spectrums, with a single harmonic; every interesting
signal has spectral contents more complicated than this, so there is no way
to filter they.

Aliasing is less easy to avoid as we can think: real signals hasn’t a spec-
trum like the one showed, because of different reasons: one is the fact that
filters are not perfect, ideal as we think, so they will attenuate many har-
monics, but not every, keeping some disturbing interference/noise; the main
reason is: as known from the Signal Processing Theory, every signal we han-
dle before sampling, must have a non-bounded bandwidth: in fact, if
the signal has bounded bandwidth, it must exists from t = −∞ to t = +∞,
and this is not possible, in the real world!

Now we will lose informations: in order to delete the aliasing contributes,
we must pre-filter the signal, before the sampling process, in order to avoid
the aliasing effects; these effects derives from the presence of high frequency
harmonics that are replicated by the sampling process. By filtering we remove
some informations from the original signal so now we are losing informations
(but if we are skilled, we can reduce this problem: we must filter only the
bad part!).

Aliasing can be reduced by two ways:
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• Improving filtering: a real filter has ripple, and a slow transition from
the passing zone to the attenuating zone; if we design good filters, we
can reduce these problems, and reduce aliasing;

• Increasing sampling frequency: if we sample with a frequency much
more higher than the Nyquist’s one, we obtain much more samples and
much less aliasing, obviously after a filter process: increasing sampling
frequency means increasing the distance between the replicas, so if
filtering is well done, much more we increase the distance between the
replicas much more we will obtain interference from the other replicas,
resolving (or reducing to negligible) our problem.

This last technique is known as oversampling: Nyquist’s criteria says
that one must sample at least at 2fB, where fB is the bandwidth of the
signal; techniques like delta-sigma or other advanced conversion are based
on sampling with very high frequency! Let’s remark that this is not so good:
sampling with high frequency means that we generate many samples per
second, so we need many power, many memory, many computation capacity,
good DSPs; there are operations that can reduce bitrate: with digital filters
(known as decimation filters) we can reduce the bitrate keeping only the
good information out of the sampler; now bitrate is lower, so we can handle
every sample with simpler analog electronics.

If we study this operations with a block chain, we must introduce an
LPF (low-pass filter) before the sampler, in order to erase bad harmonics
contributes;

A little remark: in the input of the A/D converter we need the sampler, so
the electronic circuits inside the ADC will produce numbers; A/D converters
are slow, so they need the samples for a time not short; we have to hold the
value for a time, in order to realize the conversion.

These situation is like having steps; this means that we have no more
a signal like the one previously seen, but something different: if we have a
pulses sequence in time domain, in frequency domain we will have again a
pulses sequence in frequency domain; if in time domain instead of pulses we
have steps, there will be a modification of the spectrum, because it will be
multiplied by a sinc(x), where:
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sinc(x) =
sin(x)

x
The hold operator introduces a transfer function like:

Hh(s) = e−jω
TS
2

sin
(
ω TS

2

)
ω

In block schematic there is so the multiplication for this new function,
which changes the characteristics of the system:

This problem can be resolved by introducing, in every position of the block
schematic, a filtering block with a transfer function like this (for example, it
can be the input filter):

The multiplication of these graphs (which means adding), means having a
flat behaviour of the frequency response of the system, solving our problem.
If we see filters with this shape, this correction reason can explain why.

These examples were related to an A/D chain; the opposite process (which
requires another chain) is the D/A process (digital to analog); a digital to
analog converter has the same chain, mirrored (symmetric):

After the filtering and the A/D process, some DSP will process the infor-
mation and then feed the D/A, in order to produce an analog signal from the
digitally-processed one; out of the DSP we will have a sampled spectrum, so
a spectrum with many replicas; in order to remove replicas, we need, out of
the D/A converter, another filter, which removes every replica and make the
signal treatable with simple analog electronics. There are two filters in our
system:

• The input filter, put before the A/D converter, which deletes unwanted
contributes of the harmonics (it must have a cutoff frequency minor of
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FS
2

, in order to filter; the right frequency must be designed considering
that signal must not be damaged); this filter is known as antialiasing
filter;

• The output filter, put after the D/A converter, which deletes unwanted
replicas, reconstructing the signal; this filter must have the same band-
width of the antialiasing filter, and it’s called reconstruction filter.

5.1.2 Quantization

The operation previously studied was, in a few words, the discretization of the
time domain, so the process which permits to consider, of all the continuous
time domain, only some values; the operation we will study now is the second
step of the A/D conversion previously introduced: the conversion from the
continuous amplitude interval to numbers: the conversion from samples to
numbers.

Which is the idea? A continuous signal can have any value in the input
range S; out of our system we must have numbers in D, where D is the
discrete domain. Considering an enumeration with N bits, and M levels,
where M = 2N , we can introduce our representation. Given a value in A,
we want to translate it into D; the rule to follow is simply: divide A by M
equal parts (we are considering linear quantization), so every value into
one of the M subintervals must be mapped to a number representing the
center value of this subinterval. Every number will be represented with N
bits.

Now it’s evident that we are losing information: before quantization we
know the exact value (not considering measuring tools non-idealities) of the
amplitude of the signal; after quantization, we know only in which sub-
interval our analog signal was, introducing an approximation, and an
approximation error. The quantization error is define as the difference from
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the middle of the interval and the input value; the maximum error can be
introduced is the distance from the center to the bound of the subinterval,
so:

|εq| ≤
Ad
2

The amplitude Ad depends on N , so on the number of bits that can be
used to represent every number of the sub-interval.

This is the standard transfer function for the A/D conversion:

We see steps, and their center value on a line; this line represents the
conversion gain between input and output: there is some kind of gain which
relates the position of the steps respect to numbers (some numeric relation),
but this is not important. The important thing to remark is the step shape:
we have zero level and, after an interval equal to S

M
, a discontinuity and

another step. This is obvious: until we produce a signal higher than S
M

, we
can not discriminate a signal from another, so every signal from 0 to S

M
is, for

our converter, equal; this is the loss of information: we change input value,
but can’t change output value, due to quantization error.

Can we represent quantization error? Of course:

Before the center of the step, the difference between the real value and
the step value is negative, so we will have a negative value; it will increase
until become 0, when center is equal to real value; error will increase, because
difference becomes positive, and then becomes negative for the new interval.

The parameter we want to use in order to quantify the quantization error
is a relation between the signal power and the noise power: the signal to
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quantization error noise ratio, SNRq. This can put, as we will see later,
signal, quantization and other parameters, like N .

In order to introduce these ideas, let’s introduce another idea: the am-
plitude distribution.

Amplitude distribution

The amplitude distribution is the probability to sample the same level of the
signal. This distribution is represented with a diagram rotated of 90 degrees
respect the usual ones: this is useful in order to understand, comparing these
graphs with the original ones, which amplitudes are more probable than the
other. In order to understand this idea, let’s show some examples:

• Triangular wave: as we can see, in triangular waves, every amplitude
of the signal, each value that signal can have, has the same probability
than the other values: there is always the same slope, so the same
distribution, because there are no flatter zones respect to other; the
amplitude distribution of this signal will be a line:

• Square wave: as we can see, square waves have only two values that
signal can have: the sampler will get or the high or the low level. This
means that amplitude distribution will simply be represented by two
pulses:

• Sine wave: sine wave is different of the previous signals: it has zones
with higher probability (the flat zones, zones were signal has similar
values) respect to others; :
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For this definition, let’s remark a fact: amplitude distribution does not
depend on frequency: an offset can change the offset of the curve (logical:
if we introduce an offset, we introduce a component that will be added every
time to every value of the signal, so a vertical offset on the graph.

Signal to quantization error noise

Now we will study quantization error in with the SNRq parameter:

SNRq ,
PS
Pεq

We previously introduced the idea of amplitude distribution, in order to
obtain some help from it to quantify this parameter; we know that error has
a behaviour like this:

The amplitude distribution is equal to the triangular wave one, because
sawtooth wave is very similar to a triangular wave. Since the integral of
the amplitude distribution is equal to the probability to find the error in an
interval, the value must be normalized to 1, so amplitude of the distribution
is 1

Ad
. The power of the quantization noise can be evaluated as the variance

of the quantization noise (due to ergodicity):

Pεq = σ2
εq =

∫ +
Ad
2

−Ad
2

ε2
q · ρ(εq)dεq

The integration bounds are ±Ad
2

because as bounds of the interval we
must consider (in order to simplify) the maximum value that the quantization
error εq can have, so half of the distance from the center to the bound of each
interval. We have said that our amplitude distribution is 1

Ad
, so:

Pεq =

∫ +
Ad
2

−Ad
2

ε2
q ·

1

Ad
dεq =

=
ε3
q

3Ad

∣∣∣∣+
Ad
2

−Ad
2

=

=
1

Ad

[
A3
d

2
· 1

3
− (−Ad)3

2
· 1

3

]
=
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=
A2
d

12

This is the power of the quantization error noise; Ad as known is the
quantization step, and it depends on S (amplitude of the continuous signal
input range) and 2N (number of discrete values that can be represented with
N bits):

Ad =
S

2N

So:

Pεq =
S2

12 · 22N

Now: we defined the signal to quantization error noise ratio, and we com-
puted the quantization error ratio; we can compute the signal to quantization
error noise ratio, for some types of signals: the expression of SNRq in fact
depends on the shape of the signal: if we put triangular, sine or square wave
we will have behaviours very different (as we can see from their amplitude
distributions, parameter we can use to compute also signal’s power). Let’s
analyse three cases.

SNRq with sine wave signal

If we introduce a sine wave signal that fill the quantizer’s dynamic range we
can say that the peak value of the sine wave is equal to S

2
(peak-to-peak

amplitude equal to S); the power of the sine wave can be computed with it’s
root mean square:

Vp =
S

2
=⇒ PS =

(
S
2√
2

)2

=
S2

8

So:

SNRq =
S2

8
· 12 · 22N

S2
= 1, 5 · 22N

Usually, SNRq is measured/quantified in decibel (dB):

10 log10

(
1, 5 · 22N

)
= 10 ·

[
log10(1, 5) + log10(22N)

]
=

= 10 · [log10(1, 5) + 2N · log10(2))] =
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= (1, 76 + 6N)dB

If we add 1 bit to our representation, to our device, we add six decibel of
signal to quantization noise ratio; this is obvious: if we add one bit, it means
that the LSB will value half then the previous one, so that we are dividing
the subinterval by 2; this means that power of the εq is divided by 4, so the
signal to noise ratio multiplied by 4, and has 6 dB more!

Opposite observation: and if... we consider a sine signal with peak-to-
peak value equal to half of the dynamics? Well, if we decrease the amplitude
of the signal, PS decreases, so the signal to noise ratio decreases, of 6 dB !
Not using the entire dynamic range is like having less bits on the quantizer;
as we will see later, there are a conditioning part of the system that must
adapt every signal to the quantizer’s dynamic, in order to obtain the best
performances.

SNRq with triangular wave signal

If we have a triangular wave, we can do the following observation: the power
of the signal is known from the amplitude distribution; surely, it will be less
of the sine wave power, because sine stays more time to the higher level ;
because amplitude distribution of quantization noise and triangular waves
are equal we can say that:

PS =
S2

12

Like the previous maths suggest! So:

SNRq =
S2

12
· 12 · 22N

S2A2
d

= 6NdB

We just removed the constant from the previous relation.
An observation: if we have no information about the signal we must

handle, triangular wave is a good model: we assume, if we have no informa-
tion, that every level has the same probability to be sampled, so to have a
triangular wave.

SNRq with voice signal

A real signal, like a voice signal, has this characteristics:
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For the most time, it assumes low levels; for the remaining time, high
level; the behaviour is quite similar to a gaussian behaviour. How must we
treat this signal? Usually, like in phone systems, we cut-off part of the signal,
after 3σ level, so near three times the variance of the signal; the remaining
range is the useful one for A/D conversion; we obtain that:

S = 6σ, σ =
S

6
So:

PS = σ2 =
S2

36

This will be very worse respect to the previous signals, because we have
less signal power, and when signal power is low SNR is worst:

SNRq = (6N − 4, 77)dB

An observation: all the times there is the 6N term, but with a different
constant.

5.1.3 Signal conditioning

Starting from the previous signal, we introduced a cut-off of all contributes
after a bound (in that case, 6σ); the cut must be done before the quantizer,
in order to compress characteristic and to not go out of the dynamics, keeping
the SNR level to acceptable values.

Treatments that must be done in order to obtain the best performances
of the conversion systems are of two types:

• Amplitude conditioning: the amplitude dynamics of the signal must
be equal to the amplitude, so it must be adapted with a conditioning
amplifier (normally can be realized with op-amp circuits; it is a good
idea to insert as soon as possible the amplifier, in order to reduce noise
and treat signal with high amplitudes, amplitudes that makes noise
negligible.
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• Frequency conditioning: the frequency response of the signal, in order
to avoid aliasing and other problems, must be adapted; this can be
obtained with the antialiasing filter.

The blocks that realize this operations are called signal conditioning
blocks.

Changing the amplitude of the signal, from very low to high, we have an
increase of the signal to quantization error noise ratio of 6 dB every time we
duplicate the amplitude; when we have dynamics and signal amplitude equal,
there is the adaptation point: the maximum value of the signal to noise ratio
that the system can provide with the same number of bits for representation;
if we increase the amplitude, overloading the system, there is another effect:
the εq increases without having discontinuities, because difference between
the last center of the interval and the real analog value continue to increase,
so continues to increase also the error, and the signal to noise ratio decreases
very fast.

Someone talks about ENOB (Effective Number Of Bits): if noise is too
high, signal to noise ratio is small, so if there are error sources before quan-
tizer, it is not useful to have a good resolution, because only few of all bits
are significant; this is the effective number of bits: the number of bits useful
in the representation.

5.2 Digital to Analog Converters

In order to study the first block of our system, the digital to analog con-
verter, we will introduce the external behaviour of the system, so how it
work when excited by some external event (in this case, the external event
is the introduction of numbers):
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No lines, no step, no strange things: in the device there is a number, out
of it a point, that must ideally stay on a line. This theory will be explained
for signals on the first quadrant (only positive), but is really easy to extend
on every signal with every sign. The x-axis domain, so the D domain, exists
only in some points; out of the block we will have A, bounded in S, so the
analog range of values. The A domain is considered from 0 to S, like done
before. The resolution of this system is related to the LSB, so to the least
significant bit: for every LSB there is a corresponding change of Ad (like
previous written, remembering every definition already introduced). If N
is high, the set of points seems to be a continuous line, but it is not: we
have to think, remember and remark that the input of this signal, and it’s
characteristic is not a line, but a set of points.

This device has errors; they can be classified in many ways, for example:

• Static errors: errors considering when there is no change of the values,
so without introducing sequences of bits or considering transients;

• Dynamic errors: errors that take account of transient or studied with
application of a sequence of numbers.

In order to characterize the static errors, we will consider three types of
characteristics:

• Ideal characteristic: a line that starts from 000 - 0 V, ends to 111 - S
V.

• Best approximated characteristic: characteristic, as we will see soon, is
not linear; a way to linearize it is by using the ordinary least square:
we evaluate the best line as the line that has the minimum least square
from the real points.

• Real characteristic: the union of the various points that represents the
characteristic of the device.
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These three lines make us think that there are two types of errors:

• From the ideal line (ideal characteristic) to the best approximation one
there are two types of errors: errors of slope, so differences between the
two slopes of the two signals, and errors of offset, so shifting between
the two characteristics; these are errors that can be fixed easily, simply
with op-amps circuits (by introducing gain or offset terms); because
errors can be fixed simply with modifying line parameters, they are
known as linear errors;

• As we written few rows ago, the best approximated line is obtained with
the ordinary least square, so a method which minimize the quadratic
difference between an hypothetic line and the real point positions; in
order to obtain a linear approximation, we trash every contribute
which is not linear, so from quadratic to upper, and from here the
name ordinary least square method; the errors committed in this
operation are not linear, because are committed approximated a non-
linear function into a linear one, so they cannot be corrected simply
with operational amplifiers, feedback and linear corrections: offset and
gain are not enough to provide a non-linear correction (parabolic, cubic
or more, depending on the real characteristic of the block); these,
are errors that can not be fixed easily, and are known, for the already
explained reasons, as non-linear errors.

5.2.1 Quantifying of non-linear errors

Non-linear errors cannot be corrected, unless we introduce a circuit with
a non-linear characteristic opposite to the previous one; it means that the
characteristic of the D/A converter must be measured, approximated to a
well-known function, and inverted, in order to try to realize this last function
with electronics devices and circuits. This is never done, unless we need a
very precise circuit.

What is do in every system is quantify non-linear errors, by using two
parameters: differential nonlinearity and integral nonlinearity.

123



Differential nonlinearity

The differential nonlinearity is a local parameter, that permits to quantify
the non-linear error between one point and the next one. Given a point, we
expect that it is on the line (we hope it, because we want to have an ideal
device); it can assume some position, and we must accept it. The next point,
if the characteristic is ideal must be in the next point of the D domain, for
the x-axis, and equal to the y position of the actual value, plus Ad;

Our characteristic (we are writing about the best approximated one) is
only an approximation of the real one, which is non linear; we can not ex-
pect (unless we are very lucky) that the next increase respect to the actual
value, A′d, will be equal to Ad, because it is not sure: it should be sure in
a linear characteristic, not in a non-linear one, where increases are not con-
stant (definition of linearity: all increases are equal, with equal shift in the
x-axis). The difference between the Ad expected and the actual A′d is the
differential nonlinearity. As already said, this is a local parameter, because
it is computed only on two parameters: the Ad expected and the real one.

Why can be this situation critical? Well, there is a very very critical
situation: if Ad−A′d is higher of 1 LSB, the converter will be non-monotone:
by increasing the input numbers, we will have equal or less voltage out. This
can be very critical for control systems, which want to increase some values
and actually decreases, without possibility to change.

Integral nonlinearity

If differential nonlinearity is a local parameter, integral nonlinearity is a
global parameter: it can be computer simply as the sum of every differential
nonlinearity contribute, until the point we want to consider.

There is a simple way to compute the integral nonlinearity: it can be
evaluated by taking the lines with the same slope of the best approximat-
ing one, passing through the most far point from the linear characteristic;
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the distance between the two lines will be the integral characteristic: the
maximum distance between the differential nonlinearities.

5.2.2 Dynamic errors

In the last subsection there was an introduction about static parameters of
the D/A converters; as already said, there are also dynamic error parame-
ters, which can introduce and study some other bad situations.

Settling time

When we introduce a sequence of numbers, we change from a sequence of
inputs to another, or modify some inputs, jumping from a step value to
another, there is a transient, so an actual change: the jump is not immediate,
and does not have the behaviour that we expect:

Transient never changes, in our mathematical model: solving the dif-
ferential equations that model the circuit, the system, we can see that our
signal does not converge to 0: it goes close to 0, but never reaches it!

In every system there is noise, as we know; one noise source is the quan-
tization error, already described; we can consider the transient finished after
that the output value becomes, respect to the expected one, so close to can
not distinguish dynamic error from noise. The time that actually quantifies
the end of the transient is known as settling time.

For example, if our converter has 8 bit for conversion, quantization error
εq is equal to:

εq =
1

28
=

1

256
' 0, 4%

Settling time, so, can be define as the time that system needs to reach an
error of 0,4 % respect to the steady state value (static value).
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Glitches

Another error related with the dynamic behaviour of the system is this one:
considering two values composed of many bits (for example, four bits), like
0111 and 1000, so different from 1 bit, if some event makes 0999 change to
1000, ideally the shape of the signal changes and after a transient there is no
problem. What may happen is that bits changes in different times: maybe
a 0 to 1 transition is faster than a 1 to 0 transition, so there is a moment
where signal becomes 1111, so 1000; when signal is 1111, the converter in its
output introduces the maximum amplitude that output dynamics permits,
obtaining a peak; can happen the opposite thing: if 0 to 1 transition is slower
then the other one, we have something like this:

The non-sense values that derive from this phenomena are known as
glitches: they are states of the transient where there are these effects. These
phenomena are very difficult to control: there are filters that can limit the
slew rate of the system, removing these variations.

5.2.3 Circuits for DAC

In order to realize digital to analog conversion we need a reference, so a
quantity that remains constant, from whom we can build our circuits. There
are two ideas to realize digital to analog converters:

• Uniform converters: once generated the reference quantity, we add it
many times, in order to obtain the final value; this means that we need
many time the same quantity to obtain a big value, because we need
to add the same thing many many times.

For example:

1101 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

• Weighted converters: we add quantities with different weights: if in
the previous system we added all the time the same values, now we
want to add values with different waves, in order to add less values in
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order to obtain the same result. The idea is: add many powers of 2,
with multiplying by 0 or 1, depending on the state of the circuit; for
example:

1101 = 1 · 20 + 0 · 21 + 1 · 22 + 1 · 23

We will study, for now, converters based on adding uniform of weighted
currents, and then introduce some techniques to add voltages; our base
quantity, for now, are currents.

Uniform current converters

Let’s consider the following circuit:

What is the idea? Well, easy: every resistor has same voltage; it may or
may not be connected to the ground, so it can provide it’s current or not;
this means that if switch connects the resistor, current will pass on it, so
out of our circuit we will sum, for every closed switch, a current contribute.
Every current is equal to the others: resistors are at the same voltage level
and respect to the same voltage level (if closed), and equal, so every time
we close a switch we will add in parallel another resistance, obtaining on
each one the same current. This is a uniform current converter, because
fundamental current is the same all the times: if we close a switch, we add
another current, equal to the fundamental one.

Weighted current converters

We put the same resistances in the circuit, and obtained a uniform converter;
what happens if we put weighted resistances? Well, let’s see the following
circuit:
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Topology is the same, but contributes are very different: according to the
power of 2, we have different currents! Depending on the mesh we choose,
we will have:

I1 =
VR
R

I2 =
VR
2R

I3 =
VR
4R

IN =
VR
2N

These currents are weighted, with ratio equal to 2 between one and the
previous / next one.

Now, let’s focus on a big problem of these two circuits (uniform and
weighted, as we have studied they): if the generator has a resistance, also a
very small resistance, it introduces a non-linear error: this resistance creates
a voltage divider, which weight is different for every configuration of the
switches: every time we close a switch, with this topology, we add a resistance
from VR to ground, which is different: the problem of these circuits is that
resistance changes when we close the switches, because if a switch is open, the
resistance near it isn’t referred to any voltage; when closing, we introduce a
new resistance, which will change the parameters of the divider, introducing
a voltage divider that changes with the number of switch closed, so
non-linear error (there is also an error about gain, but not only it), taking
our ratios out of the set of powers of 2; this error is not systematic, like the
gain or offset ones, because it change for every configuration in a different
way, not obtaining only different slopes or offsets. We need precision of
the ratio, in order to reduce non-linear effects, which are not controllable.
This effect can be bad: if the converter has many bits, like 16, we have a
quantization error of 2−16, so we need that other parameters of the circuit
are negligible respect to this, and also with small resistances we can not fight
this problem: we need another topology.

Our solution is the following one:
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Now every resistance is always referred to ground: all the times, from
VR to ground, we see the same resistance; output current changes, because
our current collector is referred to ground, but only if switches are connected
in a right way we can obtain the good current. There is a logic circuit which
controls switches, in order to realize, with its states and outputs, the weighted
sum of the required power of 2.

Now, let’s consider a fact: we know that passive circuit networks has
reciprocity property: this means that if we change the input of the system,
from the other side we will have the same current.

Let’s apply it to our circuit:

There is a fundamental frequency between these two circuits: in the first
one, we needed current switches: switches were referred from ground to
ground, so more difficult to realize. Now, switches are referred from VR to
ground, so they are voltage switches; voltage switches are very easy to
realize, for example with CMOS logic circuits.

A current switch is a circuit that works by stealing currents, like a dif-
ferential pair.

A remark: in this last circuit, we have again the non-linear problem about
input resistance: resistance must be computed as seen from left to right (in
this case, from where Io is); this means that, depending on which switch is
closed, resistance changes, so this circuit is again bad from the point of view
of non-linearity.

The drawback of this structure are resistors: we need resistances with
high spreading values, thing very difficult to realize, from the point of view

129



of integrated circuits.

Ladder networks

The solution of the last introduced problem is: use a ladder network. A
ladder network is a resistive network with a topology like this:

We increase the number of resistors in the ladder, but the equivalent
resistance seen from the input pin is always the same, as we can calculate
easily; by iterating the first equivalence many times, we divide the current
for a power of two that increases with the number of branches. Depending
on which type of switches we want to use, we can do something like this:

This circuit realizes the equal function of the previous one, but solving
the high resistance values spreading: we need only two values of resistances,
in order to realize this circuit. The circuit which uses current switches does
not have the generator resistance problem; the one with voltage switches,
like before, has the already seen problem, because there are, for every switch
configuration, different current values, so different contributes and non-linear
issues.

The voltage switches circuit has an advantage: it can realize not only
a current output converter, but also a voltage output converter: by taking
the open-circuit output voltage, we can translate input numbers into output
voltages without a special circuit (or op-amps).

Final observation: instead resistances, we can use capacitances (and ca-
pacitors):
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We know that resistances have a well-define linear relation between cur-
rent and voltage; with capacitances, there is a similar relation between volt-
age and charge; using this, we can realize capacitive weight networks instead
of resistive weight networks; here, weights depend on capacitance ratios;
these circuits are good, because better suited for CMOS technology, because
they can provide high impedances and low currents (and... realize low ca-
pacitances is quite easy, resistances is very bad), and they need no power
for static states.

Final considerations

As already said many times, there are two types of errors: the good ones
are linear errors, like reference voltage errors (which cause gain errors,
because every point of the characteristic will translate of some level
linearly), and some offset errors.

Non-linear errors are very bad: if only one resistance for example is bad,
its contribute will modify only a part of the characteristic: linear errors
are errors which are global, which exist for all the characteristic in the same
way (offset), or in a proportional way depending on the position of the point
considered. Non-linear errors are, by this way, very different: some zones
of the characteristic can be normal, some others very wrong; this is worse
than have all the characteristic modified by a same (or proportional) factor,
because it can be corrected with simple additive circuitry, and non-linearities
no.

If we have, for example, an error only on MSB, in every characteristic
there are two zones: one with MSB equal to zero, another with MSB equal
to 1; this means that for the first part of the characteristic, an error on
zero will be zero, so characteristic is normal; when MSB becomes 1, there
will be error for all the second part of the characteristic, so there will be a
non-linear error: something that can not be fixed with just offset or gain
changes.
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The parameter which quantifies the contribute of the non-linearity, for
cases like these, is the integral non-linearity: we can see that how less
important is our bit (most significant is MSB), less significant will be the
non-linear error: if bit is near to LSB, it will change many times, so its non-
linearity will be distributed in many places in the characteristic, obtaining
more linearity. Obviously, error of these types can transform our converter
from monotone to non-monotone.

Now, a little observation: with weighted structures, we can obtain non-
monotonicity. Can we obtain it with uniform structures? No! Uniform
structures are based on the paradigm “to obtain a value, let’s continue to
add”: every time we add, so we increase our value; there is no way to obtain
a non-monotone converter, with uniform structures! Why can’t we use all
the times these structures? Well... Let’s remark that, for N bits, we need
2N switches, and with weighted converters only N .

What can we do? Easy: mixed structures! For MSB and other significant
bits, let’s use uniform conversion, in order to handle in a good way the
most important bits and do not have errors on they; for less significant bits,
weighted conversion!

5.3 Analog to Digital Converters

As we usually have done, we will introduce the functional behaviour of ADC
systems, before introducing circuital realizations; these observations are very
similar to the DAC ones, so we will introduce quickly many arguments.
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The ADC characteristic is dual respect of the DAC one:

Now, in the x-axis we have the analog domain (input domain), in the
y-axis the digital domain. All the values in each horizontal interval are
represented with digital numbers. In the x-axis signal can have any value, in
y-axis only some values, because out of ADC systems there are numbers.

Each step size is 1 LSB, and Ad is defined, as known, as:

Ad =
S

2N

Now: if we have many steps, their width will become small.

5.3.1 Static and Dynamic errors

Static errors

As previously done, all the analysis is based on:

• Ideal characteristic of the A/D converter, supposing that every interval
is equal, and the center of each interval is connected by a line, which
starts from the origin of the system;

• Linear approximation of the actual characteristic;

• Actual characteristic.

As already done, there are two static non-linear errors: differential non-
linearities and integral non-linearities. Non-linearity can be corrected,
but with very hard ways (like introducing ad-hoc pre-distorsions).
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There is only one thing to remark: as we had, for the D/A converters, the
non-monotonicity error, there is a dual error with these types of converters:
missing code errors. These errors happen when three intervals, representing
three steps (with different amplitude, so associated to different values in the
y-axis), are overlapped and cover the middle one; in this case, the middle
output code cannot be obtained, because the big non-linearity error will
produce a skip of the middle value, causing a missing code error.

Dynamic errors

There is only one error to introduce and remark (because it will be very
important in our following analysis): the conversion time. As we know, into
the device we introduce an analog signal, sampled and hold; this second word
is very important: as already said, hold operation is very important, because
the conversion process of the device is not instantaneous. The device will
need a time equal to Tc from when the conversion start signal is received to
the end of conversion answer; this Tc is known as conversion time, and it
introduce a limit on the maximum sampling rate (or, to the maximum useful
rate which must come into the A/D converter).

5.4 Circuital implementations

Until now, we said that all static errors depend on the number of bits, and
dynamic errors on conversion time: increasing N , we decrease the amplitude
of the intervals, obtaining a better resolution; if we increase N , on the other
side, our risk is to obtain an architecture with many blocks, so with a very
high conversion time: these two parameters, N and Tc, are concurrents.
Now, we are looking inside the box, studying some circuits and characterizing
them by two parameters:

• Complexity: how many MOSFET/BJT or other components are used.
We will search for a relation between N , so the number of bit (related
to resolution), and the number of comparators needed to realize the
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circuit. Comparators are not the only bad elements in our circuit,
but surely the best ones, so in our first approximation models we will
consider only their contributes;

• Conversion time: we will try to study, for each topology, its conversion
time, evaluating how many stages, how many levels must work in order
to realize the conversion (so how many latency exists in the system).

Flash converters (parallel converters)

Let’s consider the following schematic:

On every resistor there is, in first approximation, the same current, so
every resistor defines a different threshold for every comparator, with a ther-
mometric code. There are N bits, 2N − 1 thresholds (so the same number of
comparators).

This is a very fast converter, because delay is equal to Tc: there is only
one stage to use, because all decisions happen in parallel.

Tracking converters

Now we will introduce the opposite idea, respect to the previous one; the
feedback converter:

As input we have an analog signal, which is processed by a threshold
comparator; out of the comparator there is a UP/DOWN counter: if A′ is
less than A, then counter goes UP; with opposite situation, it goes down:
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voltage comparator changes its state until steady state is reached, and with
situation it continues to switch.

If signal changes, our system will follow it (so, the name tracking con-
verter).

There is only a critical situation: the change speed of the signal. If signal
changes too fast, our system can follow it only unless if signal’s slope is lower
than the maximum slew rate permitted by the system:

SRmax ≤
Ad
Tck

=
1LSB

Tck

If the signal is faster, our converter will track it up to its maximum speed.
Now: which are the parameters of this system? Well, in order to go

through the full scale, the full dynamic range, our system needs 2N elabo-
ration times, so 2N times Tc; from the other side, it is very simple: only 1
comparator!

Successive approximation converter

Now, starting from the previous topology (useful only for didaptics), we will
introduce some better solutions. Let’s consider the following idea:

We are introducing a SAR, so a Successive Approximation Register: it
start to go near to the solution, with large steps, so reduce by dividing by
two the interval’s width, excluding every time half of the remaining interval;
excluding with every clock beat half of an interval means decide the value
of a bit: starting from MSB, the SAR decides if its value is 0 or 1; decided
it, it goes on MSB-1 value, and so on, using N clock beats (so N times Tc) to
convert our value. Let’s remark that in our first-approximation model we are
not considering logic gates delays or issues of every type but comparators.
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First time, circuit decides if excluding half of the entire interval, so the
upper or lower interval respect to the entire dynamic range, S

2
; decided that

values cannot be in the lower part of the interval (so, that MSB = 1), we find
the center of the second step interval (from S

2
to S, the average is 3S

4
); once

done this operation, we decide the value of MSB-1, excluding values higher or
lower to 3S

4
, and so on, finishing with the LSB determination. There is only 1

comparator, and N times the conversion time, because the only comparator
in the circuit will decide for N bits with N clock beats.

Residue converting

Now, we will study the previous converter type (successive approximation
converter), with a different approach, in order to obtain some improvements.

When our previous converter tried to determine the value of the first
MSB, what had it done? Well, it asked to himself... is our signal higher
or lower than S

2
, so to half of the dynamic range? Verified that the signal

is higher (like in the previous example) of half of the interval, it continued
with the second step: is our signal higher or lower than 3S

4
, so to S

4
, plus the

previous S
2

?. Now, let’s generalize this idea: we had MSB = 1, but... who
says to us that it is all the time true? Well, we can do something better: we
can consider that, for the second step:

A >
S

4
+
S

2
MSB ?

Obvious: if MSB is 1, the system adds S
2

to the actual parameter (for the
MSB-1): S

4
; if MSB is 0, we have only S

4
, as expected. Now, a little algebraic

manipulation: given A our number:(
A− S

2
MSB

)
>
S

4
?
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So:

2

(
A− S

2
MSB

)
>
S

2
?

We can define this term:

R1 = A− S

2
MSB

And R1 is known as MSB residue.
These definitions are very useful, because they permit to introduce a way

to compute, with the same operation each time, the code associated to the
value. Each time we can compute the (i + 1)-bit simply by comparing the
double of the previous residue, Ri, with S

2
. Each time the same residue is

amplified by two, and compared with S
2
, until it goes over the signal; when

it goes over, the residue becomes computed as the difference from the high
value (the old residue) and the signal value (A), so approximation is done
from up to down. All the times we do the same operation.

This is the block diagram of this system:

With this architecture, for N bits we need N comparators, and we will
have N levels to go through; ’till now, this is not very interesting, but we
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are going to introduce an idea which will transform this idea to a very smart
one.

Pipeline structure

Considering as known the idea of pipelining, so the technique with whom
we can increase the throughput of the system, we can do something like this:

Every time we end elaboration in each single stadium, there is an analog
memory (so a Hold circuit) which maintains the signal ready for the next
stadium, and loads a value from the previous; beat after beat we will process
in each stadium a different value, so the throughput of the system will result
very increased.

This system is very interesting: skipping the first/last value, it has the
same speed of the flash converter, with N comparators instead of 2N .

Now, we can complete a benchmark between the various architectures,
and show the results in the following table:
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Mixed architectures

Can we obtain something better of the two best architectures, by introducing
some trade-off architecture, which mix the benefits of the two previous? Well,
the answer is yes, and solution is: build residue systems on multiple bits,
instead of using bit-to-bit conversion.

An example of what we can do, is the following one: in order to realize a
8 bit A/D converter, we can do this:

Using two cells of 4 bits, we can obtain directly the four MSB, so turn back
to analog with a D/A converter, add the input signal (which was analog),
and, multiplying by 16 (in order to shift of four positions our signal), use
the same A/D cell previously used. This is very interesting: we need 24 − 1
instead of 2N − 1 comparators; conversion time is 2Tc, so, without exploiting
this idea (this is a basic example), we can obtain very very good results.
This architecture can be improved, as previously done, with pipelining,
increasing the throughput of the system.

5.5 Differential converters

Differential converters are a family of special conversion circuits; formerly,
these circuits were very useful for voice signals, but now are widely used for
almost every type of application. As we will see, one of our goals will be the
one to shift the complexity from the analog domain to the digital domain,
where everything is simpler.

The idea is this: let’s start from the old tracking converter:
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This converter was studied in the previous section, so we are not going to
talk about it. As we can see, the output of the comparator is sent to the U/D
counter, which sends another signal to the comparator, and the output will
show if the new value is higher of lower of the signal. Differential converters
are based on another idea: if we take as output directly the stream of values
which controls the U/D counter, and we send it into a D/A converter, we have
as output of the system a sequence of non-weighted values. Why this idea
is useful? Well, non-weighted values are interesting because they provide
informations about the behaviour of the signal: by reading “0” we know
that signal is decreasing, by reading “1” we know that signal is increasing,
so we can compare each value to the previous one, obtaining a differential
information, a local information: we know, at every bit, if signal is increasing
or decreasing respect to the previous one.

5.5.1 ∆ converters

Now, let’s try to simplify our circuit, without using D/A converters, which
are a critical block (slow, and which must be precise): if we consider the
U/D counter block and the D/A converter, we know that depending on the
output of the U/D we will have a signal that goes up or down; we want a
circuit which realizes a similar behaviour, with simple elements.

Now, let’s try to simplify our circuit: if we put a switch out of the com-
parator instead of the U/D counter, and an integrator instead of the D/A
converter (let’s remark that the combination of the two blocks is equivalent
to the previous one: each block has different behaviour, but by taking they
together we obtain something similar), we have this behaviour: out of the
switch we will have positive or negative pulses, depending on the output of
the comparator; these pulses are sent to an integrator, which keeps in mem-
ory the previous state of the system, and produces an increasing ladder or a
decreasing ladder, depending on the state of the switch.
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Pulses are so obtained with the switch; they are produced at fixed rate,
so with a clock CK, with frequency Fck and period Tck equal to the inverse
of the frequency. The output of the converter can be high or low; out of the
switch, in the instants when switch is closed, there are the values catched
out of the comparator, so positive or negative pulses. The integrator is just
a decoder of these pulses: it proposes, given as input a sequence of pulses,
some signal shape.

This is still a tracking converter, but it uses a switch instead of the old
circuitry; let’s remark that this converter is used directly with changing sig-
nals, so it does not need any sampler: sampling process is internal of the
system. Converters of this family are known as Delta converters, or ∆
converters.

Parameters of the ∆ converter

Let’s try to characterize ∆ converters with their main characteristics; we
define γ as the absolute amplitude of a step. We want to identify the pa-
rameters (and the limits) of this system, in order to put it in relation with
previous converters. Previously, we used two parameters, in order to charac-
terize converters: the number of bits N , and the conversion time Tc; both N
and Tc are not interesting, because ∆ converters are 1-bit converters, which
work at very high frequencies, realizing so a similar result respect to the old
converters, with only 1-bit conversion; Tc is not necessary anymore, because
we are not using any D/A in our new system, so we must find new parameters
which can characterize and put in relation these systems.

We know that N was related to other parameters, in old systems, with
this relation:

142



N −→ Ad =
S

1N

Increasing N , we reduce step size, increasing the resolution.
In ∆ converters, the full-scale of the differential converter depends on

slew rate: if signal changes too fast, converter cannot follow it; the maxi-
mum slew rate is defined as the maximum voltage change in a time, so:

∆V

∆t

∣∣∣∣
max

=
γ

Tck

Previously, γ was Ad, and it was related with 1 LSB; now, let’s try to
find something other. For sine waves, we have that:

d

dt
Vi sin(ωit)

∣∣∣∣
max

= Vi · ωi sin(ωit)|max = Vi · ωi

Converter can track only signals with a full-scale equivalent like this:

γ

Tck
= ωiVi

So:

Vi =
γ

Tck · ωi
This is the maximum amplitude that converter can handle; this corre-

sponds, in old systems, to S.
We found the maximum value which can be handled by this system; and

the minimum one? Well, with old converters, the minimum signal amplitudes
that converters handled were the ones which might be recognized, respect to
quantization noise; now, if signal has amplitude lower than γ

2
, it is recognized

as idle noise, so:

γ

2
< V <

γ

ωTck

Numerical example and oversampling

Let’s try to solve the following problem: we want a differential converter
which provides the same performances in dynamic range of an 8-bits con-
verter with 3 kHz signal, and sampling rate of 3 kS/s.

Before starting, a definition: we define the dynamic range as:

DR =
SMAX

Smin
=
VMAX

Vmin

143



So as the ratio between the input voltage range bounds which guarantees
that system works.

For the special converter, we have that:

M = 2N = 28 = 256

Other specifications are not interesting: the sampling rate one guaran-
tees only that sampling process satisfies the Nyquist’s criteria, and other
informations are not useful at all.

For ∆ converters:

VMAX

Vmin
=

γ
ωTck
γ
2

=
2

ωTck
= 256

So the minimum sampling frequency must be equal to:

Fck = ω · 128 = 2π · 3 kHz · 128 ' 2, 5MS/s

This is a very high sampling rate.
Previously, converters needed a 64 kS/s sampling rate, now 2,5 MS/s:

differential converters must work with oversampling, so with sampling
rates very very higher respect to the Nyquist’s frequency. There are bad and
good news:

• Bad news: with sampling rate so high, we must handle many samples;
many samples means that we must introduce memories, or something
else;

• Good news: we are operating with very high sampling rates; this means
that the aliases which derive from the the sampling process are very
far, as known from the Signal Processing Theory; this means that like
always done we had to remove with filters aliases, but now, supposing
(as always done) that signals have a low-pass frequency behaviour,
there are less contributes with the same filter; this means that we can
relax the specifications of the filter, obtaining a less expensive device.
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Another benefit: in ’40s was proof that quantization noise has a spectral
density that goes from 0 to the sampling rate frequency; if we increase the
sampling rate, noise power becomes lower, because it is normalized with a
higher divider; by increasing sampling rate, we reduce the spectral density
amplitude, increasing performances.

Oversampling so has benefits respect to noise, to filtering, etc. , benefits
paid with a very high amount of information to handle; this issue can be
solved by putting a decimation filter after of the differential converter: a
decimation filter is a digital filter which takes many bits to realize only one
very precision bit, reducing the bit-rate; other filters are easier, because they
can be realized, thanks to oversampling, also with simple RC cells!

Adaptive converters

There are some techniques which can increase the dynamic range without
increasing too much the sampling rate; they are based on the idea to have
different values of γ, depending on the output amplitude of the system. Let’s
consider a circuit like this:

Before introducing the integrator there is analog multiplier, controlled by
a power estimator which introduces some gain (varying the input signal of
the multiplier), obtaining pulses with variable amplitudes.

As we have already written, these converters are differential; if our
system sees that the polarity of the comparator is changing all the times,
means that signal is very low; the power estimator so sends a signal which
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reduces the γ, in order to increase the resolution of our system; if there is a
unipolar signal (so a sequence of ones or zeros), γ will increase, in order to
handle fast signals.

Σ−∆ converters

Let’s consider another solution, widely used in modern systems, and probably
the most interesting of all ideas since ’till now. If we take sine signals, like:

v(t) = V sin(ωt)

If we introduce it in an integrator, out of it we will have:∫
V sin(ωt)dt =

V

ω
cos(ωt)

Let’s consider the slew rate expression, with a signal treated with this
operation:

SR = ω · V
ω

= V

Very very interesting: the maximum slew rate of this signal is no longer
depending on its frequency, but only on its amplitude, V ! This idea can be
implemented in a differential converter:

In this feedback loop, there is an integrator before every branch of the +;
this means that we can simplify our chain, considering a system like this:

In fact, integration is a linear operation, so we can substitute the sum
of two integrals with the integral of the sum of the terms, because of lin-
earity; on the decoder side, we previously needed a differentiator out of the
last integrator, that compensate the integrator. In this schematic there are
no filters: this converter realizes some kind of sampling, so we must define
the bandwidth before processing our signal, and cut-off every alias after the
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process. Because of oversampling, these filters will be simple (RC-cells), so
nothing hard.

Converters of this type are called Sigma-Delta converters, or Σ − ∆
converters, and their main property is the fact that they have no dependence
of dynamic range from frequency!

Now, let’s take a look on quantization noise: we can show that this model
has this transfer function:

Y (s)

N(s)
=

1

1 + 1
s

=
s

1 + s

This can be proof with Automatic Controls theory. This transfer func-
tion has a high-pass frequency behaviour: noise is no longer flat, so we
have shaped the spectrum of noise. This high-pass behaviour reduces the
quantization noise in base-band, increasing the performances respect to the
∆ converters.

Final considerations

Usually, when we need high performances with only 1-bit converters, Σ−∆
converters are the best choice; this is a first order differential converter,
because there is only one integrator; often there are second order converters,
based on using two integrators instead of one; this increases the precision of
noise rejection, obtaining performances similar to 24-bit converters, so very
very high! These systems are very precise, with non-precise devices, so there
are good results by starting from not excellent components.

5.5.2 Logarithmic converters

The analog to digital converters studied before can be used for almost every
application; there are techniques which can be used for one of the most
important signal processing application: voice signals processing. As known,
voice signals are signals which have values near to zero for almost every
time, and in some times have values close to the full-scale ones. For signal
like these, the usual linear conversion is not the best one. In order to have a
better resolution for signals with amplitude close to zero, an idea can be the
one to introduce a non-linear transfer function, so a transfer function where,
depending on the amplitude of the signal that must be converted, there is a
different width of the intervals. For voice signals, we want narrower intervals
close to zero, so the best shape can be the logarithmic one.
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This is a weak reason to use logarithmic quantization instead of linear
quantization: there is, in fact, a very important reason, which can drives us
to use this technique instead of the other. Let’s consider this block scheme:

Out of our scheme we will have D, which is:

D = log(A) + εq

The quantization error εq can be represented as the logarithm of some
other value, Kq; we have that εq is a value similar to zero, so we must expect
that Kq is similar to 1; we can express the previous expression with:

D = log(A) + log(Kq) = log(A ·Kq)

This is very very interesting: with logarithms, we can see the additive er-
ror as a multiplication error; this is very good, because multiplicative errors
change linearly the output of the system: if we have a constant εq, but a
variable signal, the quantization error will affect the signal every time in a
different way, so non-linearly, because there is no relation between quanti-
zation error and signal value; now, we found a relation, and this thanks to
logarithms! In other word, now error is relative to the value of the signal.
This can be explained with the weak reason: if we work with low values of
the amplitude of the signal, we have a reduced step Ad, so we have a quan-
tization noise reduced (due to the properties of the logarithmic function) in
a way that can maintain constant the signal to noise ratio:
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Now, let’s think about circuits: the first thing we have to handle is that
our signal is not only positive, but is bipolar: can assume both negative
and positive values; we must introduce some variation from the original log-
arithmic function, in order to take account of this fact. Another fact: as we
move close to zero, theoretically the logarithm’s value must go close to −∞.
There are two solutions for this issue:

• Translation: we introduce a distance from the two characteristics,
avoiding problems related to their original behaviour and obtaining
bipolar support; this is done with µ-law encoders;

• Linearisation: we introduce, from a point identified by 1
A

, a linearisation
of the behaviour of the characteristic near the zero amplitude, so an
approximation of the characteristic with a line.

Since in both cases we do something different, something approximated
respect to real logarithms, we can expect that what is predicted from the
maths is different from what we will obtain actually.

There is another really bad approximation: logarithms are not repre-
sented, obtained with their continuous shape, but with a piecewise approx-
imation of the theoretical function. Piecewise approximation, as previously
studied, means that the shape of the function is approximated with a set
of lines, one put after the other. With logarithmic functions, we have, for
each point, that the same distance represent the same ratio; in piecewise ap-
proximation we can imagine that this behaviour is globally satisfied, but not
locally: we divide the function in segments, which are divided in levels:
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There is a sign parameters, so a bit which can identify the polarity of
the signal, a segment parameter, which can identify which line we are con-
sidering, and a level parameter, that identifies which point of the considered
segment are we considering.

This approximation introduces a very bad issue: on each segment, we
have a linear approximation of the logarithm; this means that, on each
segment, the quantization error is constant: on every line there is a
non-linear error! In fact, signal changes its value, but quantization error no,
because this is a linear approximation of a logarithm: from two segments
there is a change of the quantization error, but inside the segment we can
not have this benefit. Another issue: if we consider points near to the bound
of the segment, with points which are right respect to the bound we will
have a quantization error, with points which are left respect to the bound
a lower quantization error, and almost the same signal amplitude! If from
each interval to the previous/next one there is a ratio of 2, we will increase or
decrease the signal to quantization noise ratio of 6 dB, because maintaining
the same amplitude of the signal, and reducing to half the quantization’s
noise one. From the other side, if we go from the left bound to the right
bound of the segment, we will decrease the signal to noise ratio of 6 dB,
because we are saying that each segment is realized in order to duplicate (or
reducing to the half of) the quantization error, increasing or decreasing the
width of the Ad intervals: into the intervals, the error is not relative,
but constant.

The actual behaviour of the signal to noise ratio will be the following one:
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There are ripples where we expected to have a flat behaviour; these ripples
are wide 6 dB, because of the considerations previously done.

With the new technologies, logarithmic quantization is realized with dig-
ital circuits, using an ADC before the quantizer and processing with a DSP.

5.5.3 Waveform and model encoding

In this subsection we want to introduce a different way to encode signals,
without introducing any formal idea. Until now, we have sampled a signal,
so processed it and sent with some transmission circuit; given a sequence of
numbers, we sent they in order to obtain the signal our of the receiver.

This is a good idea, but not the only one: every sine signal can be charac-
terized with three parameters: amplitude, frequency, phase. If we send these
three parameters, instead of the samples of the sine wave, we can obtain, out
of the receiver, the same information. This can be done only if we have in
both receivers a model of the signal: send these three parameters can be
useless, if from the other side of the telecommunication system there is no
way to understand what they mean!

Model must be well-known in each system, in order to avoid misunder-
standings; we wish to obtain also parameters with a good correctness and
resolution, in order to apply they on the model and obtain correct informa-
tions.

With this idea can be realized models of signal very interesting, like the
voice ones: by modelling the larinx, we can obtain a model on whom we can
apply our parameters, and obtain the voice transmission/reception. With
these ideas, there are two quality standards :

• Recognize the interlocutor: in application like the telephonic ones, a
good result is permit to the users to recognize the interlocutor;
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• Understand the speech: if we ask less information, we can only want to
understand the speech; this can be useful with alerts or some situations
like these.

5.5.4 A/D/A systems

A complete analog to digital to analog system (the most used chain, in order
to take a signal, process it with DSP and take it out with a usable format)
can have a block schematic like the following one:

About this chain, we will study only two things:

• How to design the characteristics of the antialiasing filter;

• How to quantify the global errors of the chain.

Antialiasing filters

Every signal has a useful bandwidth fB; for useful bandwidth we mean
that portion of the spectrum of the signal which contains useful informations
to process; every signal exists for a finite time, so its spectrum has no bound:
this means that we have aliasing effect. Supposing to not know anything
about the signal but its useful bandwidth, we can assume that it is flat, in
the frequency domain; filter must be designed in order to limit bandwidth as
specifications say, but how much it must filter must be defined starting from
other specifications: if our filter is badly designed,it will filter, but keeping
high noise amplitudes. The goal of this subsection is to introduce a way to
understand how much our filter must filter, quantifying the number of poles
which it must introduce.

Let’s start from an observation: a 1-order filter, so an RC-cell, has a
decreasing behaviour, with a slope (in the Bode plot) of - 20 dB/dec ; this
means that the amplitude-bandwidth product is constant, so that with a
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frequency increase there is a linear amplitude decrease, in decibel. For P -
order filters, there will be something similar to this: now the amplitude-
bandwidth product is not constant anymore, because it will decrease more
quickly: the amplitude and the frequency are still related, but with a different
slope: instead of - 20 dB/dec, there will be a slope of - P · 20 dB/dec, so a
difference of P .

This idea can be very useful when we want to have a well-specified signal
to noise ratio: if we want for example a signal to noise ratio of 40 dB from
12 to 38 kHz, we must:

1. Evaluate in decibel the ratio of the frequencies;

2. Determine the number of poles necessary to obtain this signal to noise
ratio, by doing:

P =
Desired SNR

Frequency range ratio in decibel

Sample and hold circuits

As known, the sample and hold circuit must sample a value, and hold it in
the output until conversion process is ended; these circuits are not ideal, so
there are many error sources.

The worst error in this block of the system is obtained when the circuit
goes from the sample state to the hold state: the sampling jitter: from
the instant when the sampling and hold circuit receives the open command
(in order to end to charge the capacitor and hold this voltage level to the
output), and the instant when switch opens, there is a non-zero time. In
this time, that we will call TA, the circuit continues to charge the capacitor,
changing the voltage at its pin, obtaining a different output voltage respect
to the expected one.
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Now, there is a problem: TA is not a constant time, because it is affected
by noise; due to this reason, we have to consider Tj, so the jitter time. It
can provide, with a sine wave, a voltage change of ∆V :

∆V = Tj · SR = Tj · ω · Vi

Effective Number Of Bits

We are going to end this chapter, introducing a parameter which can quantify
the total error in the A/D/A system, with the already seen considerations
and approximations. This chapter can be derived with an idea deriving by
one already seen in these notes: the quantization error one.

For our system, we consider many error sources; we can take account of
all of them, by computing a signal to noise ratio for the whole chain; every
error source is stochastically independent from the others, so we can evaluate
the total noise power by adding the noise power of each block.

What we are interested to define is something similar to the number of
bits of a quantizer: previously we proofed a formula which put in relation the
number of bit of the quantizer and the quantization error; what we are going
to do is to define an equivalent number of bits, so not a real number of
bits, but only a parameter which says how many of the output bits of the
system are significant. Given the total signal to noise ratio SNRT , we can
compute it as:

SNRT = 6 · ENOB + 1, 76dB

So:

ENOB =
SNRT − 1, 76

6

Surely, this number will be lower than N , so of the number of bits of the
quantizer: quantization error is only one of the many errors in our system,
so when we are taking into account all of them, we have a decrease of the
signal to noise ratio respect to the quantization noise one, and the equivalent
number of bits will be lower respect to the available one.
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